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Abstract

The rapid evolution of wireless communication technologies has paved the way for an era of data-
driven applications that heavily rely on the exchange of time-critical information for monitoring and
control purposes. This shift is evident across various domains: autonomous vehicles exchanging
safety-related information, remote surgery systems requiring ultra-reliable and low-latency com-
munication, and high-frequency automated trading platforms demanding real-time data updates. In
these emerging application scenarios, the freshness of information is of paramount importance, as
outdated data not only loses its value but can also lead to system failures and potentially catastrophic
safety risks. Traditional timeliness performance metrics such as latency and inter-delivery time
have proven inadequate to capture the timeliness requirements of these mission-critical applications.
To address this limitation, the concept of Age of Information (AoI) has emerged as a reliable metric
for quantifying information freshness in communication networks.

This thesis investigates AoI analysis and optimization across diverse wireless communication
systems, including ultra-reliable low-latency communication (URLLC), simultaneous wireless
information and power transfer (SWIPT), unmanned aerial vehicle (UAV) assisted networks, and
deep joint source-channel coding (DJSCC)-based semantic communication. Mathematical models
are employed to analyse average AoI (AAoI) in URLLC-enabled UAV-assisted communication
systems and UAV-assisted wireless sensor networks (WSNs). Closed-form expressions for AAoI
are derived using stochastic hybrid systems models, and the effect of system parameters such as
UAV altitude, block length, and update generation rate on information freshness is investigated. For
analysis of short packet systems, finite blocklength information theory is employed to accurately
model the performance of URLLC systems. Simulation results demonstrate that UAV-assisted relay
communication maintains lower AoI compared to traditional direct transmission.

The thesis also examines the AAoI in SWIPT-enabled cooperative relay networks under different
scheduling policies, namely, transmit without waiting and wait until charged. Moreover, it introduces
a novel DJSCC-based semantic communication approach to minimize AoI for image transmission
and proposes a new content-based AoI metric, the age of misclassified information (AoMI), for
DJSCC-based systems. These concepts are applied to a UAV-based wildfire detection system,
enhancing accuracy and timeliness of information delivery. Simulation results show the DJSCC-
based approach achieves lower AoMI than traditional methods, especially at low signal-to-noise
ratios and bandwidth.

In summary, this thesis emphasises AoI as a critical metric for mission-critical applications,
offering insights into optimising wireless communication systems for information freshness. It
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enhances understanding of AoI in UAV-assisted networks, WSNs, and semantic communication
systems, paving the way for future research on improving information freshness.

Keywords: Age of Information, Semantic communication, Simultaneous wireless information and
power transfer, Ultra-reliable low-latency communication, Unmanned aerial vehicles.
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Resumo

A rápida evolução das tecnologias de comunicação sem fio abriu caminho para uma era de
aplicações baseadas em dados que dependem fortemente da troca de informações críticas em
tempo real para fins de monitoramento e controle. Essa mudança é evidente em vários domínios:
veículos autônomos trocando informações relacionadas à segurança, sistemas de cirurgia remota que
requerem comunicação ultra-confiável e de baixa latência,e plataformas de negociação automatizada
de alta frequência que exigem atualizações de dados em tempo real. Nesses cenários de aplicação
emergentes, a atualidade da informação é de suma importância, pois dados desatualizados não
apenas perdem seu valor, mas também podem levar a falhas no sistema e potencialmente a riscos
catastróficos de segurança. As métricas tradicionais de desempenho de pontualidade, como latência
e tempo entre entregas, provaram ser inadequadas para capturar os requisitos de pontualidade
dessas aplicações críticas. Para abordar essa limitação, o conceito de Idade da Informação (Age of
Information - AoI) surgiu como uma métrica confiável para quantificar a atualidade da informação
em redes de comunicação.

Esta tese investiga a análise e otimização de AoI em diversos sistemas de comunicação sem
fio, incluindo comunicação ultra-confiável de baixa latência (URLLC), transferência simultânea de
informação e energia sem fio (SWIPT), redes assistidas por veículos aéreos não tripulados (UAV)
e comunicação semântica baseada em codificação conjunta de fonte e canal profunda (DJSCC).

Modelos matemáticos são empregados para analisar a AoI média (AAoI) em sistemas de
comunicação assistidos por UAV habilitados para URLLC e redes de sensores sem fio (WSNs)
assistidas por UAV. Expressões de forma fechada para AAoI são derivadas usando modelos
de sistemas híbridos estocásticos, e o efeito de parâmetros do sistema, como altitude do UAV,
comprimento do bloco e taxa de geração de atualizações na atualidade da informação, é investigado.
Para análise de sistemas de pacotes curtos, a teoria da informação de comprimento de bloco finito
é empregada para modelar com precisão o desempenho dos sistemas URLLC. Resultados de
simulação demonstram que a comunicação por retransmissão assistida por UAV mantém menor
AoI em comparação com a transmissão direta tradicional.

A tese também examina a AAoI em redes de retransmissão cooperativas habilitadas para
SWIPT sob diferentes políticas de agendamento, nomeadamente, transmitir sem esperar e esperar
até carregar. Além disso, introduz uma nova abordagem de comunicação semântica baseada em
DJSCC para minimizar a AoI na transmissão de imagens e propõe uma nova métrica de AoI baseada
em conteúdo, a idade da informação classificada erroneamente (age of misclassified information -
AoMI), para sistemas baseados em DJSCC. Esses conceitos são aplicados a um sistema de detecção
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de incêndios florestais baseado em UAV, melhorando a precisão e a pontualidade da entrega de
informações. Resultados de simulação mostram que a abordagem baseada em DJSCC alcança
menor AoMI do que os métodos tradicionais, especialmente em baixas relações sinal-ruído e
largura de banda.

Em resumo, esta tese enfatiza a AoI como uma métrica crítica para aplicações críticas, ofere-
cendo insights para otimizar sistemas de comunicação sem fio para a atualidade da informação. Ela
melhora a compreensão da AoI em redes assistidas por UAV, WSNs e sistemas de comunicação
semântica, abrindo caminho para pesquisas futuras sobre a melhoria da atualidade da informação.

Palavras-chave: Comunicação semântica, Comunicação ultra-confiável de baixa latência, Idade
da Informação (Age of Information), Transferência simultânea de informação e energia sem fio,
Veículos aéreos não tripulados.
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Chapter 1

Introduction

1.1 Scope and Motivation

The rapid advancement of wireless communication technologies has triggered the era of the internet
of things (IoT), cyber-physical systems and robotic networks, offering unprecedented opportunities
to enhance efficiency across various aspects of our daily lives [1–3]. These technologies enable the
collection and transmission of massive quantities of data through wireless networks, facilitating
communication amongst numerous nodes, including sensors, actuators, machines, autonomous
vehicles, unmanned aerial vehicle (UAV)s and a wide array of smart devices.

In this context, timely delivery of information has become crucial, particularly for mission-
critical applications where outdated data can lead to severe consequences. However, traditional
performance metrics such as latency and delay have proven inadequate in capturing the essence of
information freshness. To address this limitation, researchers have introduced a novel performance
metric called the age of information (AoI) [4–6].

AoI measures the time elapsed since the generation of the most recent update successfully
received at the destination, providing a comprehensive understanding of information freshness by
considering both the generation and the successful delivery of updates. This metric is particularly
crucial for applications such as autonomous vehicles, UAV networks and real-time monitoring
systems, where outdated information can have severe consequences.

The scope of this thesis encompasses the investigation of AoI in diverse wireless communication
scenarios, including short packet communication systems [7], simultaneous wireless information
and power transfer (SWIPT)-enabled cooperative relay networks [8–10], multi-source UAV-assisted
wireless sensor network (WSN)s [11–13] and deep learning-based semantic communication systems.

This research was motivated by the need to analyse and optimise AoI under various constraints
such as short packet transmissions, energy harvesting (EH) and multiple information sources. It
aimed to explore the impact of system parameters including transmission policies, block length
and update generation rate on information freshness.

By addressing these critical aspects of AoI in wireless communication systems, this thesis
sought to provide valuable insights for the design and optimisation of future wireless networks
that prioritise information freshness. The findings contribute to the understanding of how various
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system parameters impact AoI and guide the development of strategies to maintain timely and
relevant information delivery in mission-critical applications.

Furthermore, this thesis extends its scope to include semantic communication, a paradigm
that focuses on conveying the meaning of information rather than just bits. This approach is
particularly relevant in modern wireless networks, where sending all raw bits is often impossible
or a waste of limited resources. By integrating semantic communication principles with AoI
analysis, this research aims to enhance the efficiency and relevance of information transmission in
wireless networks. This combined approach is especially valuable in scenarios where the semantic
content of the information is crucial, such as in image classification for surveillance systems, where
transmitting and processing only the most relevant semantic information can significantly reduce
bandwidth usage and improve system responsiveness.

The ultimate goal of this research was to enhance the reliability and efficiency of time-sensitive
communication systems, paving the way for more effective and responsive IoT applications and
cyber-physical systems. By developing a comprehensive framework for analysing and optimising
AoI in next-generation wireless networks, including semantic communication aspects, this thesis
aims to contribute significantly to the evolving landscape of wireless communications and its
wide-ranging applications in our increasingly connected world.

1.2 Problem Statement

The rapid advancement of IoT and mission-critical wireless applications has underscored the
necessity for the timely delivery of fresh information. Traditional metrics such as latency and delay
have proven inadequate in capturing the essence of information freshness. Consequently, AoI has
emerged as a novel performance metric, measuring the time elapsed since the generation of the
most recently delivered update at the destination [5].

AoI offers a comprehensive view of information freshness by considering both the generation
and delivery times of updates, making it particularly crucial for applications such as autonomous
vehicles, UAV networks and real-time monitoring systems, where outdated information can lead to
severe consequences [4].

This thesis investigates AoI in diverse wireless communication scenarios, including short
packet communication, SWIPT enabled cooperative relay networks, multi-source UAV-assisted
WSNs and DJSCC-based image transmission systems. The research aims to analyse and optimise
AoI under constraints such as short packet transmissions, EH and multiple information sources
whilst exploring the impact of system parameters including transmission policies, block length and
network topology on information freshness.

Furthermore, this thesis introduces a novel metric called age of misclassified information
(AoMI) to address the limitations of traditional AoI in capturing the impact of information content
on usefulness, particularly in applications such as image classification in surveillance systems.
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1.3 Research Questions and Hypotheses

This thesis addressed the following research questions and corresponding hypotheses:

1. Research Question 1: How does short packet communication affect the AoI in wireless
networks?

Hypothesis 1: Short packet communication is expected to introduce a trade-off involving
transmission errors and latency that affects AoI. An optimal block length is hypothesised to
exist that minimises AoI by balancing these competing effects. This optimal block length is
likely to depend on channel conditions, particularly the signal-to-noise ratio (SNR).

2. Research Question 2: How does SWIPT affect the AoI in wireless networks?

Hypothesis 2: The integration of SWIPT is expected to significantly impact the AoI in
wireless systems. The interplay between EH and data transmission in SWIPT systems may
introduce new trade-offs that affect information freshness. This research aims to develop
a framework for analyzing AoI in SWIPT-enabled networks, providing insights into the
performance of time-sensitive applications in these systems.

3. Research Question 3: How can AoI be optimised in multi-source UAV-assisted WSNs,
considering the unique challenges of aerial communication?

Hypothesis 3: Incorporating UAVs into WSNs will significantly enhance the freshness of
information, as measured by the average age of information (AAoI). By optimizing UAV
altitude, block length and sensor activation probability, the system can achieve low latency
and high data reliability across diverse environmental conditions, thus improving the overall
performance and timeliness of data delivery compared to traditional communication systems.

4. Research Question 4: How can we effectively measure information freshness in semantic
wireless communication?

Hypothesis 4: Novel content-based AoI metrics that incorporate semantic relevance are
expected to more accurately capture information freshness in semantic wireless commu-
nication systems compared to traditional AoI metrics. Techniques such as DJSCC, when
applied to semantic communication, are anticipated to improve freshness of the semantic
information across various channel conditions. This approach is expected to lead to more
efficient information transmission and better performance in next-generation wireless systems
that prioritise semantic content.

By addressing these research questions and testing these hypotheses, this thesis aims to
contribute to the growing body of knowledge on AoI and its applications in next-generation
wireless networks, including the emerging field of semantic communications, ultimately
enhancing the reliability and efficiency of time-sensitive communication systems.
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1.4 Outline and Contributions

This thesis addresses critical research gaps in the understanding of AoI in wireless communication
systems. It consists of an introductory chapter and four technical chapters, each focusing on a
specific aspect of AoI in modern wireless networks. These chapters are interconnected, building
upon each other to provide a comprehensive analysis of AoI across various wireless communication
scenarios. The concept of AoI has emerged as a crucial metric for quantifying the freshness of
information in communication networks, particularly in mission-critical applications. As wireless
communication systems evolve towards 5G and beyond, maintaining the timeliness of information
becomes increasingly important. However, several critical research gaps exist in the current
understanding of AoI in modern wireless networks. This dissertation addresses these gaps through
comprehensive theoretical analysis and practical applications.

The research presented in this thesis addresses four key gaps. Firstly, it tackles the lack of
comprehensive AoI analysis in ultra-reliable low latency communications (URLLC)-enabled UAV
communication systems. While UAVs offer promising solutions for enhancing wireless coverage
and capacity, their impact on information freshness, especially in the context of URLLC, remains
understudied. Secondly, it explores the limited understanding of AoI dynamics in SWIPT-enabled
cooperative relay networks. The interplay between EH and information freshness in resource-
constrained networks presents unique challenges that have not been fully explored. Thirdly, it
addresses the insufficient theoretical frameworks for analysing AoI in multi-source UAV-assisted
WSNs. The complexity of these systems, involving multiple sensors and mobile aerial relays,
necessitates a more robust analytical approach to optimise information freshness. Lastly, it tackles
the absence of AoI metrics that account for semantic accuracy in DJSCC-based image transmission
and classification systems. As wireless networks increasingly support artificial intelligence-driven
applications, there is a pressing need for AoI based metrics that consider both the timeliness
and semantic correctness of transmitted information. The following provides a summary of the
contributions of each chapter and their interconnections with the objectives of this dissertation.

1.4.1 Chapter 2: Background and Analysis of AoI

Chapter 2 presents a comprehensive literature review and background analysis on AoI in wireless
communication systems. The current body of knowledge related to AoI and its applications has been
critically analysed in this chapter to provide a strong foundation for the technical work presented
in subsequent chapters. The review begins with a deep understanding of the AoI concept, its
mathematical formulation and its importance in quantifying information freshness compared to
traditional timeliness metrics. The chapter proceeds with an assessment of different analytical
approaches to the study of AoI, contrasting the traditional graphical method with the more recent
stochastic hybrid system (SHS) approach. The chapter reviews AoI applications across various
wireless communication scenarios. First, it provides a critical review of the AoI literature in
UAV-enabled communications. This review focuses on how AoI has been used to optimise
UAV deployment and communication strategies while maintaining information freshness. It also
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examines studies on AoI in short packet communication systems, which address the impact of finite
blocklength. Another area that this chapter focuses on is AoI in SWIPT systems; more specifically,
it assesses the existing body of literature on the trade-offs between EH and information freshness.
Finally, an overview of the emerging AoI area in semantic wireless communication systems is
provided, along with indications of how AoI concepts are used for adaptation in content-aware
communications. This chapter identifies important research gaps and emerging trends in AoI
research, thus providing context and motivation for the original contributions described in the
following chapters of the thesis.

1.4.2 Chapter 3: AoI in URLLC-enabled UAV Wireless Communications

This chapter makes significant contributions to the analysis of AoI in URLLC-enabled UAV
communication systems. A theoretical model is developed to analyse AoI in these systems and
closed-form expressions for AAoI in UAV relay networks are derived. The work determines
optimal UAV altitude, block length, transmission power and update generation rate to minimise
AAoI. Notably, the chapter extends SHS analysis for wireless systems with transmission errors,
providing a robust method for AoI analysis in complex scenarios. The research demonstrates
the advantages of UAV-assisted communication in maintaining information freshness compared
to direct transmission, offering valuable insights for the design of UAV-based communication
networks. This chapter lays the foundation for the subsequent chapters by introducing the concept
of AoI in UAV-assisted networks and SHS-based analysis for the AoI, which is further explored
and expanded upon in later sections.

1.4.3 Chapter 4 : AoI in SWIPT-Driven Wireless Communications

Building upon the AoI analysis framework established in the previous chapter, this section con-
tributes to the understanding of AoI in SWIPT-enabled cooperative relay networks using finite
blocklength theory. It derives expressions for block error rate and AAoI under two different
transmission policies: transmit without waiting (TWW) and wait until charged (WUC). The work
evaluates the impact of various factors on AAoI, including transmission power, packet size and
block length. By comparing AoI performance between TWW and WUC policies across different
network scenarios, the chapter provides valuable insights into the trade-offs between EH and timely
information transmission in resource-constrained networks. This analysis is crucial for optimising
the performance of SWIPT-enabled systems in terms of information freshness.

1.4.4 Chapter 5 : AoI-Inspired UAV-Assisted Wireless Sensor Networks

Expanding on the UAV-assisted communication concepts introduced in the third chapter, the
contributions of this chapter lie in the development of a theoretical framework for analysing AoI in
multi-source UAV-assisted WSNs. Closed-form expressions for network AAoI and block error rate
are derived, enabling a comprehensive understanding of information freshness in these complex
systems. The work determines optimal UAV altitude, block length and sensor activation probability
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to minimise network AAoI. A key contribution is the formulation of a lemma specifying the
optimal sensor activation probability for maintaining optimal AoI, which is particularly valuable for
the design and optimisation of large-scale sensor networks. The chapter demonstrates the superior
performance of UAV-assisted WSNs over traditional fixed base station systems in maintaining
information freshness, providing strong support for the adoption of UAV technology in WSNs.
This chapter synthesises the concepts from the third chapter, applying them to a more complex
multi-source network scenario, thus bridging the gap between theoretical AoI analysis and practical
network deployments.

1.4.5 Chapter 6 : AoI in Semantic Communications

Building on the comprehensive AoI analysis developed in the previous chapters, this final chapter
makes novel contributions to the field of semantic communications by introducing the concept
of AoMI for measuring information freshness in image classification systems. It proposes a
DJSCC approach to minimise AoI for image transmission, bridging the gap between semantic
communication and information freshness. The chapter develops an expression for average AoMI
using the stochastic hybrid systems approach, providing a robust analytical framework for these
systems. The application of the proposed framework to a UAV-based wildfire detection system
demonstrates its effectiveness in maintaining information freshness for critical applications, whilst
also incorporating the UAV communication aspects explored in earlier chapters. This work opens
new avenues for research in semantic-aware communication systems that prioritise both the meaning
and timeliness of information. This chapter represents the culmination of the thesis, integrating the
AoI concepts and UAV-assisted communication developed throughout the dissertation to address
the emerging field of semantic communications.

1.4.6 Publications Related to This Thesis

The results of this thesis work were published in 10 publications, including 4 Quartile-1 peer-
reviewed journal papers, 1 Quartile-2 peer-reviewed journal paper and 5 international conference
papers. The list of publications produced during the Doctor of Philosophy in Informatics programme
is as follows:

Journal articles

1. [14] Basnayaka, C. M. W., Jayakody, D. N. K., & Chang, Z. (2021). Age of information-
based URLLC-enabled UAV wireless communications system. IEEE Internet of Things
Journal, 9(12), 10212-10223.

2. [15] Basnayaka, C. M. W., Jayakody, D. N. K., Perera, T. D. P., & Beko, M. (2024).
DataAge: Age of Information in SWIPT-Driven Short Packet IoT Wireless Communications.
IEEE Internet of Things Journal, 11(16), 26984-26999.

3. [6] Basnayaka, C. M. W., Jayakody, D. N. K., & Beko, M. (2024). Freshness-in-air: An
AoI-inspired UAV-assisted wireless sensor networks. ICT Express,10(5), 1103-1109.
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4. [16] Sharma, A.†, Vanjani, P.†, Paliwal †, N., Basnayaka, C. M. W.†, Jayakody, D. N.
K., Wang, H. C., & Muthuchidambaranathan, P. (2020). Communication and networking
technologies for UAVs: A survey. Journal of Network and Computer Applications, 168,
102739.

5. [17] Sharma, A.†, Sharma, V.†, Jaiswal, M., Wang, H. C.†, Jayakody, D. N. K., Basnayaka,
C. M. W.†, & Muthanna, A. (2022). Recent trends in AI-based intelligent sensing.
Electronics, 11(10), 1661.

6. Basnayaka, C. M. W., Jayakody, D. N. K., & Beko, M. (2024). Sky Sentinels: UAV-
Powered Semantics Wireless Communications for Dynamic Wildfire Detection. (Revision
stage).

Conference papers

1. [18] Basnayaka, C. M. W., Jayakody, D. N. K., Perera, T. D. P., & Ribeiro, M. V.
(2021, April). Age of information in an URLLC-enabled decode-and-forward wireless
communication system. In 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-
Spring) (pp. 1-6). IEEE.

2. [19] Basnayaka, C. M. W., Jayakody, D. N. K., & Beko, M. (2023, November). Semantics-
Empowered UAV-assisted Wireless Communication System for Wildfire Detection. In
2023 IEEE 28th International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD) (pp. 152-157). IEEE.

3. [20] Basnayaka, C. M. W., Jayakody, D. N. K., Perera, T. D. P., Hämäläinen, T. T., &
Da Silva, M. M. (2022, December). Age of Information in a SWIPT and URLLC enabled
Wireless Communications System. In 2022 IEEE International Conference on Advanced
Networks and Telecommunications Systems (ANTS) (pp. 302-307). IEEE.

4. Basnayaka, C. M. W., Jayakody, D. N. K., & Beko, M. (2024, December). Optimizing
Real-Time Freshness: Deep Joint Source–Channel Coding Based AoI in Wireless Networks.
In 2024 IEEE Global Communications Conference (GLOBECOM). IEEE. (Accepted)

5. [21] Payagalage, P. M. P., Basnayaka, C. M. W., Jayakody, D. N. K., & Kumar, A. (2023,
March). Network virtualization and slicing in uav-enabled future networks. In 2023 6th
Conference on Cloud and Internet of Things (CIoT) (pp. 98-103). IEEE.

1 † These authors contributed equally to this work.
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Chapter 2

Background and Analysis of AoI

2.1 Introduction to AoI

The evolution of wireless communication has catalysed a new age of interconnectivity, giving rise to
transformative technologies such as the IoT and cyber-physical systems. These innovations promise
to revolutionise and optimise numerous aspects of our daily existence [1–3]. In this emerging
landscape, a large array of data-gathering devices continuously collect enormous volumes of
information, which is then disseminated through extensive wireless networks. While the low-
latency transmission of data is critical for time-sensitive applications, maintaining data freshness is
equally crucial in ensuring the relevance and utility of the information being communicated [1–3].

To address this pressing need for information freshness, the concept of AoI has emerged
as a pivotal performance metric. AoI is defined as the time elapsed since the generation of
the last successfully received update at the destination. This metric captures the timeliness and
relevance of the data by considering both the generation and successful delivery of updates [5,
15, 20, 22]. This approach, originally employed in the 1990s to determine time consistency in
real-time databases, AoI has recently gained significant attention from the wireless communication
community, especially for studying status update systems and mission-critical applications [23–26].

The AoI metric deviates from traditional timeliness measures such as latency, offering a more
comprehensive approach to quantifying the freshness of received information [4, 5, 20]. It evaluates
information freshness from the perspective of the destination as an alternative to well-established
performance metrics such as packet delay and round-trip latency [14]. AoI measures the time
interval between the generation and delivery of the most recently delivered packet, while packet
delay measures the time interval between packet creation and delivery [27].

As a timeliness metric, AoI outperforms delay in effectively capturing the freshness of updates.
For instance, even when the transmission delay is minimal, received data may not always be
considered fresh if the packet generation rate is low. Conversely, if the update generation rate is
high, the received data may still lack freshness if packets experience substantial queuing delays
during transmission. Therefore, AoI is recognised as a valuable and pivotal performance metric for
mission-critical IoT applications [28].

The importance of AoI becomes particularly crucial in scenarios where the status of sensors
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or devices must be known as quickly as possible to make critical decisions. For example, in
autonomous vehicles, even a few milliseconds of outdated sensor data could potentially lead to
accidents [4]. In IoT networks, maintaining up-to-date status information at the receiver is essential,
as most IoT applications are mission-critical and outdated information could result in significant
consequences.

2.1.1 The AoI Metric

Consider a simple communication system containing a source-destination pair as illustrated in
Figure 2.1. The source sends fresh updates to a network and the network subsequently delivers

Source DestinationNetwork

∆(𝑡)

Figure 2.1: Simple communication system containing a source-destination pair

those updates to the destination. The generation time of the most recent update received by the
destination at timestamp 𝑡 denotes as 𝑔(𝑡). Then, the AoI Δ(𝑡) can be described as a random process
as follows:

Δ(𝑡) = 𝑡 − 𝑔(𝑡). (2.1)

As illustrated in Figure 2.2, it is assumed that at 𝑡 = 0, the measurement of AoI starts. The AoI at
the opposite source is set to Δ(0) = Δ0. The source generates updates at instants g0, g1, g2, ..., gn.
These updates pass through the network and the destination receives them at instants z0, z1, z2, ..., zn.
As illustrated in Figure 2.2, data update 𝑖 is transmitted from the source at time instant 𝑡 = 𝑔𝑖 and
it is successfully delivered to the opposite source at time instant 𝑧𝑖= 𝑔𝑖 + 𝑌𝑖. Therefore, the AoI
at the destination can be calculated as Δ(𝑧𝑖) = 𝑧𝑖 − 𝑔𝑖. The AoI grows at a unit rate until the next
update is delivered to the destination. Similarly, AoI just before the 𝑖 + 1 update is successfully
delivered can be written as Δ(𝑧−

𝑖+1) = 𝑌𝑖 + 𝑋𝑖 . Then, after the update is delivered, the AoI drops as
Δ

(
𝑧+
𝑖+1

)
= 𝑌𝑖+1. Hence, the age process Δ(𝑡) exhibits the saw-tooth pattern as illustrated in Figure

2.2. For a given time period, time average AoI can be computed using the area under Δ(𝑡) . For
this system, the observation time interval considered as [0, 𝑇𝑐 ] and 𝑁 (𝑇𝑐) = max {𝑛 | 𝑔𝑛 ≤ 𝑇𝑐}
denotes the number of updates by time 𝑇𝑐. The area under the curve can be treated as a sum of
the polygon area 𝑃0, the trapezoidal areas 𝑄𝑖 for 1 ≤ 𝑖 ≤ 𝑁(𝑇𝑐) (𝑄1 and 𝑄𝑛 are highlighted in the
figure) and the triangular area 𝑃1 of width 𝑌𝑛 over the time interval (𝑔𝑛, 𝑧𝑛) as shown in Figure 2.2.
Then, the time average age Δ𝑇𝑐 can be calculated by applying graphical methods to the saw-tooth
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Figure 2.2: Evolution of AoI Δ(𝑡) with the time at the destination in a simple commutation
system containing a source and destination pair: Each source generates updates at time stamps
g0, g1, g2, ..., gn and the opposite source receive these updates at time stamps z0, z1, z2, ..., zn.

age waveform as follows:

Δ𝑇𝑐 =
1
𝑇𝑐

∫𝑇𝑐
0

Δ(𝑡)𝑑𝑡

=
𝑃0 + 𝑃1 + ∑𝑁 (𝑇𝑐 )

𝑖=1 𝑄𝑖

𝑇𝑐
,

=
𝑃0 + 𝑃1

𝑇𝑐
+
𝑁 (𝑇𝑐)
𝑇𝑐

1
𝑁 (𝑇𝑐)

𝑁 (𝑇𝑐 )∑︁
𝑖=1

𝑄𝑖 ,

(2.2)

where
𝑄𝑖 =

1
2
(𝑋𝑖 + 𝑌𝑖+1)2 − 1

2
𝑌2
𝑖+1 = 𝑌𝑖+1𝑋𝑖 +

1
2
𝑋2
𝑖 ,

where 𝑋 is the inter-arrival time between delivered updates and 𝑌 is the system time of such an
update. In here, it is assumed that the system is stationary and ergodic [29] and time average age
Δ𝑇𝑐 tends to ensemble-average age Δ𝐴𝐴𝑜𝐼

𝑖
when 𝑇𝑐 → ∞, i.e.

Δ𝐴𝐴𝑂𝐼 = lim
𝑇𝑐→∞

Δ𝑇𝑐 . (2.3)

When 𝑇𝑐 → ∞, 𝑁 (𝑇𝑐 )
𝑇𝑐

→ 1
E[𝑋] ,

1
𝑁 (𝑇𝑐 )

∑𝑁 (𝑇𝑐 )
𝑖=1 𝑄𝑖 → E [𝑄] and the 𝑃0+𝑃1

𝑇𝑐
term goes to zero, where

E [·] is the expectation operator. Thus, the AAoI (Δ𝐴𝐴𝑜𝐼 ) can be written as

Δ𝐴𝐴𝑂𝐼 =
E[𝑋2]

2 + E[𝑋𝑌 ]
E[𝑋]

. (2.4)

In general, E[𝑋𝑌 ] is difficult to estimate since 𝑋 and 𝑌 are dependent random variables for most
of the wireless systems. Hence, despite its simplicity, calculating the AoI in complex wireless
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systems using this type of graphical analysis is challenging. However, the SHS analysis has been
introduced as a new tool to analyse AoI replacing traditional graphical-based AoI analysis [30].

The AoI is widely regarded as a destination-centric metric since it measures the time difference
between the current time and the generation time of the most recent update received by the
destination. It only takes into consideration packets that are correctly sent to the destination.
Moreover, the AoI is strongly affected by the system delay and the update generation rate at the
source. In contrast to AoI, the delay is a traditional timeliness metric that measures the latency
of a packet and is considered a packet-centric metric. On the other hand, the update (or packet)
generation rate at the source does not affect the delay [31].

2.2 Analytical Approaches for AoI

AoI has emerged as a critical metric in real-time systems, prompting extensive research across
diverse queueing models. The initial work by Kaul et al. [32, 33] analysed AoI in queues M / M
/ 1, M / D / 1 and D / M / 1 first-come first-served (FCFS), establishing a foundation for future
studies. This research aimed to characterise and minimise AoI, focusing on two key AoI-based
metrics: time-average age and average peak age.

As the field progressed, the scope expanded to more complex queue types, including M/G/1,
G/M/1 and G/G/1 [4, 34–39]. Alternative service policies, such as last-come first-served (LCFS)
and various packet management strategies, were analysed under different arrival and service
time distributions [40, 41]. System modifications, including reduced buffer sizes and packet
deadlines [42], demonstrated the potential to improve AoI in FCFS systems. Significant findings
in AoI research include the establishment of LCFS and last-generated first-served (LGFS) policy
optimality [35, 43, 44], the benefits of parallel servers in AoI improvement [44, 45] and the
impact of packet errors or drops on AoI [46, 47]. Some studies challenged conventional approach,
questioning whether deterministic update generation and service times always minimise AoI [48].
The literature also identified trade-offs between AoI metrics and packet delay [31, 49] and analysed
age performance for sources with varying priorities [50].

Two primary analytical methods have emerged in AoI studies: the graphical area decomposition
method [32, 45, 51] and the SHS method [30, 52–58]. These tools have advanced the understanding
of AoI across various scenarios and system configurations. The conventional graphical analysis,
which calculates the area under the instantaneous AoI curve, provides a visual representation of
AoI evolution over time. Although this approach is well-suited for simple systems, it becomes
progressively more complex when applied to systems with multiple data sources or complex update
patterns. On the other hand, the SHS method treats instantaneous AoI as a stochastic process with
both discrete and continuous characteristics [59, 60]. The SHS model combines continuous state
variables (representing age) with discrete state variables (representing system states such as idle
or busy). This method is particularly effective for analysing systems with random arrivals, service
times and multiple servers or sources.

The SHS model offers advantages over the graphical method for complex wireless communi-
cation systems with transmission errors. It enables the derivation of closed-form expressions for

12



2.2. ANALYTICAL APPROACHES FOR AOI

AAoI and related metrics, even in systems with complex dynamics. The SHS approach has been
successfully applied to various scenarios, including multi-source systems, prioritised systems and
networks with EH nodes.

2.2.1 Stochastic Hybrid System for AoI

Generally, in SHS techniques, the AoI process is modeled as a combination of continuous
states x(𝑡) and discrete states 𝑞(𝑡). Moreover, discrete states 𝑞 (𝑡) ∈Q= {0, 1, · · · , 𝑚} capture
status of the communication network that can be represented using Markov chain. The eval-
uation of the age process of the wireless network is represented using continuous vector x(𝑡)
= [𝑥0 (𝑡) , 𝑥1 (𝑡) , · · · , 𝑥𝑛 (𝑡)] ∈ R1×𝑛+1.Then, the SHS model can be described using a directed
graph (Q,L), where Q is the set of discrete states and L is the set of transitions, with each state
as a node and each transition as a directed edge. The transaction rate from node 𝑞𝑙 to node 𝑞𝑙 ′ is
𝜆 (𝑙)𝛿𝑞𝑙 ,𝑞(𝑡 ) , where Kronecker delta function 𝛿�̂�,𝑞(𝑡) limit occurrence of transition only for the state
𝑞𝑙 . For each transition 𝑙, most of the time, there is a discontinuous jump in the continuous state and
it can be represented using linear transition reset mapping as follows:

x′ = xA𝑙, (2.5)

where A𝑙 ∈ {0, 1} (𝑛+1)×(𝑛+1) is a binary transition reset map matrix. The growth rate of the
continuous state (¤x(𝑡)) ) at each discrete 𝑞 (𝑡) = 𝑞 where 𝑞 ∈ Q given by

¤x (𝑡) =
𝜕x (𝑡)
𝜕𝑡

= b𝑞, (2.6)

where b𝑞 =
[
b𝑞,0 b𝑞,1, · · · , b𝑞,𝑛

]
is a vector that contains only binary elements. When x 𝑗 (𝑡) grows

at a unit rate as a normal age process in the state 𝑞, b𝑞, 𝑗 = 1 and when it is irrelevant to the ageing
process or does not need to be tracked in the state 𝑞 , b𝑞, 𝑗 = 0. Let 𝜋�̂�(𝑡) denote the discrete state
probabilities for all 𝑞 ∈ Q and v�̂�(𝑡) denote the the conditional expectation of the age process, given
that 𝑞 (𝑡) = 𝑞, weighed by the probability of being in 𝑞. Accordingly, the following is obtained:

𝜋�̂� (𝑡) = E
[
𝛿�̂�,𝑞 (𝑡 )

]
, (2.7)

and the correlation vector function

v�̂� (𝑡) =
[
𝜐�̂�0 (𝑡) , · · · , 𝜐�̂�𝑛 (𝑡)

]
, (2.8)

where 𝜐�̂� 𝑗(𝑡) can be defined as

𝜐�̂� 𝑗 (𝑡) = E
[
𝑥 𝑗 (𝑡) 𝛿�̂�,𝑞 (𝑡 )

]
, 0 ≤ 𝑗 ≤ 𝑛. (2.9)

All transactions L can be divided into two categories: incoming transitions (L′
𝑞) and outbound

transitions (L𝑞). Then, for each state 𝑞, all incoming transitions are labelled as

L′
𝑞 =

{
𝑙 ∈ L : 𝑞′𝑙 = 𝑞

}
(2.10)
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and all outgoing transitions are labelled as

L𝑞 = {𝑙 ∈ L : 𝑞𝑙 = 𝑞} . (2.11)

To compute the time average age, it is assumed that the Markov chain 𝑞(𝑡) is ergodic. Hence, the
state probability vector 𝜋(𝑡) = [𝜋0 (𝑡) , · · · , 𝜋𝑚 (𝑡)] always converges to unique stationary vector �̄�
= [�̄�0, · · · , �̄�𝑚] satisfying

�̄��̄�
∑︁
𝑙∈L�̄�

𝜆 (𝑙) =
∑︁
𝑙∈L′

�̄�

𝜆 (𝑙) �̄�𝑞𝑙 , 𝑞 ∈ Q, (2.12)

∑̄︁
𝑞∈Q

�̄��̄� = 1. (2.13)

As it has been shown in [55], when 𝜋 (𝑡) = �̄�, v (𝑡) = [v0 (𝑡) , · · · , v𝑚 (𝑡)], the system follows
first-order differential equations for all 𝑞 ∈ Q as follows:

¤v�̄� (𝑡) = b�̄� �̄��̄� +
∑︁
𝑙∈L′

�̄�

𝜆 (𝑙)v𝑞𝑙 (𝑡) A𝑙 − v�̄� (𝑡)
∑︁
𝑙∈L�̄�

𝜆 (𝑙) . (2.14)

Under the ergodicity assumption, the differential equation (2.14) is stable and each v�̄� (𝑡) =
E

[
x (𝑡) 𝛿�̄�,𝑞 (𝑡 )

]
converge to a non-negative limit v̄q̄ as 𝑡 → ∞. Accordingly, the following is

obtained:
E [x] = lim

𝑡→∞
E [x (𝑡)] = lim

𝑡→∞
E

[
x (𝑡) 𝛿�̄�,𝑞 (𝑡 )

]
=

∑̄︁
𝑞∈Q

v̄q̄, (2.15)

v̄�̄�
∑︁
𝑙∈L�̄�

𝜆 (𝑙) = b�̄� �̄��̄� +
∑︁
𝑙∈L′

�̄�

𝜆 (𝑙) v̄𝑞𝑙A𝑙, 𝑞 ∈ Q. (2.16)

Here, 𝑥0 (𝑡) is the age at the destination and AAoI at the destination ( Δ𝐴𝐴𝑜𝐼 ) is calculated as follows
[61]:

Δ𝐴𝐴𝑜𝐼 = E [𝑥0] = lim
𝑡→∞

E [𝑥0 (𝑡)] =
∑̄︁
𝑞∈Q

�̄��̄�0. (2.17)

2.3 AoI in Various Wireless Communication Scenarios

2.3.1 AoI in UAV-Enabled Communications

In recent years, significant interest has been observed in the integration of UAV communication
systems into existing and future cellular networks [21, 62–64]. This concept can be traced back
to the early 2000s, with early prototypes such as the one developed by Wzorek et al. in 2006,
which demonstrated a network between two UAVs and a ground operator using General packet
radio service technology [65]. However, due to technological limitations at the time, immediate
commercialization of this idea was not feasible.

A significant advancement was made in 2016 when China Mobile Research Institute and
Ericsson presented field results from a prototype long-term evolution (LTE)-UAV integrated
network. This prototype elucidated the potential benefits of mobile technologies for the drone
ecosystem and analysed the service requirements of mobile networks [66–68]. Subsequent research
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led to several proposals by the 3rd generation partnership project (3GPP) that investigated the
capability of aerial vehicles to serve using LTE networks [69]. These studies concluded in 2017
and resulted in a comprehensive 3GPP technical report documenting analysis, evaluation and field
measurement results.

In the context of UAV-assisted communication networks, the concept of the AoI has been
identified as a critical factor. UAVs have gained prominence in mobile networks such as 5G
and beyond, owing to their potential as mobile relays to enhance the reliability and timeliness of
information. This capability is deemed crucial for the advancement of IoT applications [11–13, 16,
70–72].

Recent studies have focused on applying the AoI concept to various wireless communication
scenarios, with UAV-enabled communication systems emerging as a significant area of research.
Investigations have been conducted on the average peak AoI for UAV-enabled mobile relays,
involving the optimisation of flight trajectories, energy consumption and service time to reduce
AoI [73]. These studies have demonstrated that careful planning of UAV paths and energy usage
can significantly reduce AoI compared to static relay systems.

The deployment of multiple UAVs has also been explored as a solution to address the challenges
of limited energy storage in single UAV operations [74]. Multi-UAV systems have shown potential
for further AoI reduction by enabling more efficient coverage of sensor networks and providing
redundancy in case of UAV failures or energy depletion. Additional studies have examined AoI-
optimal data collection in WSNs [75, 76], addressing the challenges of maintaining information
freshness during data collection operations.

Beyond AoI optimisation, researchers have investigated various aspects of UAV-assisted commu-
nication networks. Short packet communication has received considerable attention for addressing
challenging problems in these networks [77]. Studies have explored the feasibility of employing
UAVs to support URLLC using short packet communication [78, 79]. These works have addressed
various aspects, including the optimisation of transmit power and block length, the evaluation of
latency and reliability and the combination of passive beamforming with resource allocation and
UAV positioning. Furthermore, investigations have been conducted on the average packet error
probability and effective throughput of the control link in UAV communications [80]. UAV-enabled
relay communication systems have been proposed for transmitting latency-critical messages with
ultra-high reliability [81]. As UAV-assisted communication networks continue to evolve, addressing
the aforementioned challenges and optimising performance metrics such as AoI and latency will
be crucial for their successful integration into future wireless communication systems and IoT
applications. The ongoing research in this domain is expected to yield significant advancements
in the field of UAV-assisted communications, paving the way for more efficient and reliable aerial
communication networks.

2.3.1.1 AoI in UAV-Assisted Wireless Sensor Networks

The rapid growth of the IoT, cyber-physical systems and UAV-assisted communication networks
has unlocked unprecedented opportunities to enhance efficiency across countless domains of our
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daily lives. Among these, UAV-assisted WSNs have garnered substantial interest and attention for
their potential applications spanning agriculture, disaster relief operations, military endeavours and
beyond [11–13]. The decisive advantage of employing a UAV-based station in WSNs lies in its
ability to establish reliable line-of-sight (LoS) communication links with ground nodes, thereby
mitigating the adverse effects of obstacles and non-line-of-sight (NLoS) conditions that plague
traditional terrestrial base stations. By acting as an aerial relay, the UAV can effectively bypass
physical obstructions and maintain strong communication links, ensuring timely and reliable data
collection from the distributed sensor nodes. This is particularly crucial in urban environments,
disaster zones, or terrains where terrestrial infrastructure may be compromised or inaccessible.
Moreover, the mobility and flexibility of UAVs enable dynamic adaptation to changing network
conditions, allowing for optimal positioning to minimise communication delays [82].

In time-critical WSN applications where prompt and accurate information is of the essence,
maintaining the freshness and reliability of data is paramount importance, as outdated or stale
information can precipitate severe and far-reaching consequences. The AoI metric furnishes
valuable insights into the effectiveness of time-sensitive UAV-assisted WSNs, serving as a potent
tool for evaluating their performance [25, 83, 84]. While existing works have analysed AoI for
single-source or grant-based protocols in URLLC-enabled UAV networks [14, 82, 85], they have
largely overlooked the challenges posed by multi-source scenarios that are prevalent in practical
WSN deployments. Notably, in real-world WSN environments, multiple sensing nodes often coexist
and transmit data simultaneously, leading to potential collisions, interference and degradation of
information freshness. Failing to account for these multi-source dynamics can result in inaccurate
estimates of system performance and suboptimal resource allocation, ultimately compromising the
effectiveness of the WSN in time-critical applications [86].

2.3.2 AoI in Short Packet Communication Systems

The integration of AoI analysis with short packet communication has become a crucial area of
research for future wireless networks, particularly in the context of 5G and beyond. 5G mobile
networks are designed to address three key use cases: enhanced mobile broadband (eMBB), massive
machine-type communication (mMTC) and URLLC. Currently, the application areas of eMBB and
mMTC have achieved a satisfactory level [7, 87, 88]. However, achieving the latency and reliability
requirements set by the URLLC standard is more challenging than the other two use cases.

Traditionally, long codewords have been used to maintain reliable wireless communication. On
the other hand, short packet communication is considered an essential feature to support low latency
[89]. However, short-packet communication has a higher transmission error rate than traditional
long-packet transmission, making it challenging to maintain reliability requirements. As a result,
more resources are needed for retransmissions and redundancy to improve reliability, but these
induce high latency. Hence, it is necessary to carefully navigate these two constraints to meet the
requirements of URLLC.

Thus, it is inappropriate to use conventional asymptotic information-theoretical results de-
ployed for long-packet communication to calculate the block error probability in short-packet
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communication. To address these challenges, researchers have been developing new techniques
and theoretical frameworks. A significant breakthrough came from Polyanskiy, Poor and Verdú
(PPV) [90], who derived an accurate approximation of the achievable coding rate for Additive
white Gaussian noise (AWGN) channels within the finite block-length regime. This work has
since been expanded to investigate coding rates in various situations, including block-fading [89],
multiple-input and multiple-output [91], relaying [92] and multi-access communication [93]. As a
result, finite block-length information theory has become a valuable theoretical tool for analysing
short-packet communication in wireless systems [7, 16, 94–96].

In wireless systems, packet structure plays a crucial role in information transmission. Each
packet contains information bits and additional redundancy bits for error correction. The payload
consists of 𝑘 bits, including 𝑘𝑖 information bits and 𝑘𝑜 additional bits for metadata. This payload
is typically encoded into 𝑛𝑒 symbols, with 𝑛𝑜 symbols added for packet detection, synchronisation
and channel state estimation. The total packet length 𝑛 is thus given by 𝑛 = 𝑛𝑒 + 𝑛𝑜. The efficiency
of a communication system is often measured by its net transmission rate, 𝑅𝑡 , defined as 𝑅𝑡 = 𝑘𝑖/𝑛.
This ratio represents the number of information bits per complex symbol or, equivalently, the
number of transmitted payload bits per second per unit bandwidth. In most current wireless systems,
𝑘𝑖 ≫ 𝑘𝑜 and 𝑛𝑒 ≫ 𝑛𝑜, making 𝑅𝑡 approximately equal to 𝑘/𝑛𝑒. A communication channel model
can be expressed as:

𝑌𝑘 = 𝐻𝑘𝑋𝑘 +𝑊𝑘 , 𝑘 ∈ N, (2.18)

where 𝑌𝑘 is the channel output,𝑋𝑘 is the transmitted complex symbol, 𝐻𝑘 is the channel coefficient
and𝑊𝑘 is the additive Gaussian noise. This model forms the basis for analysing different channel
types in wireless communications. Two main channel types are considered: the AWGN channel and
the non-ergodic channel. In the AWGN channel, 𝐻𝑘 is a constant known to both the transmitter and
receiver. For such ergodic channels, the relevant performance metric is the capacity 𝐶. In contrast,
for non-ergodic channels, where 𝐻𝑘 is random but constant over time, the outage capacity 𝐶𝜖
becomes a more relevant metric due to the inability to make the error probability arbitrarily small
by increasing 𝑛𝑒. For short-packet communications, the concept of maximum coding rate 𝑅∗

𝑡 (𝑛, 𝜖)
is introduced. It represents the largest rate 𝑘/𝑛 for which there exists an encoder/decoder pair with a
packet error probability not exceeding 𝜖 . The relationship between 𝑅∗

𝑡 (𝑛, 𝜖) and traditional metrics
is expressed as:

𝐶𝜖 = lim
𝑛→∞

𝑅∗(𝑛, 𝜖), (2.19)

𝐶 = lim
𝜖→0

lim
𝑛→∞

𝑅∗(𝑛, 𝜖). (2.20)

In the non-asymptotic regime of communication systems, there exists no exact formula to determine
the 𝑅∗

𝑡 (𝑛, 𝜖) as a function of blocklength and error probability. However, significant progress has
been made through the development of tight achievability and converse bounds that effectively
characterise the fundamental limits, even for blocklengths as short as 100 symbols. These bounds,
along with normal approximations, have revealed that the necessary backoff from channel capacity
in the finite blocklength regime can be accurately and succinctly characterised by a single parameter
known as channel dispersion. This parameter quantifies the stochastic variability of the channel
relative to a deterministic channel with the same capacity, providing a fundamental measure of
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how channel uncertainty affects achievable rates. The channel dispersion directly controls the size
of the rate penalty term, determining the required reduction in transmission rate below capacity.
A larger channel dispersion requires more backoff from capacity for a given blocklength and
error probability, whilst a channel with zero dispersion achieves capacity exactly even with finite
blocklengths. This provides a precise, quantitative way to understand the fundamental limits of
short-packet communication. Thus, for various channels with positive capacity 𝐶, 𝑅∗

𝑡 (𝑛, 𝜖) can be
approximated as [90]:

𝑅∗(𝑛, 𝜖) ≈ 𝐶 −
√︂
𝑉

𝑛
𝑄−1(𝜖) +𝑂

(
log 𝑛
𝑛

)
, (2.21)

where𝑉 is the channel dispersion and𝑄−1 is the inverse of the Gaussian Q function. This expression
shows how the penalty term

√︃
𝑉
𝑛
𝑄−1(𝜖) quantifies the necessary rate reduction in finite blocklength

communications. The scaling with 1√
𝑛

demonstrates how this penalty diminishes with increasing
blocklength, though at a relatively slow rate. The presence of 𝑄−1(𝜖) captures how the required
rate reduction grows as stricter reliability requirements are imposed. The remainder term 𝑂

(
log 𝑛
𝑛

)
becomes negligible for moderate blocklengths, allowing the first two terms to provide an accurate
approximation in most practical scenarios. For the average-power constrained AWGN channel,
where 𝐻𝑘 = 1, the model simplifies to:

𝑌𝑘 = 𝑋𝑘 +𝑊𝑘 . (2.22)

The capacity and channel dispersion for this channel are given by [95]:

𝐶(�̄�) = log(1 + �̄�), (2.23)

𝑉(�̄�) =
�̄�(2 + �̄�)
(1 + �̄�)2 (log 𝑒)2, (2.24)

where �̄� is the SNR. A good approximation for 𝑅∗
𝑡 (𝑛, 𝜖), known as the normal approximation, can

be obtained by ignoring the 𝑂( log 𝑛
𝑛

) term, resulting in:

𝑅∗(𝑛, 𝜖) ≈ 𝐶 −
√︂
𝑉

𝑛
𝑄−1(𝜖). (2.25)

The approximation in (2.25) provides a simpler way to characterise the maximum coding rate by
omitting the remainder term 𝑂

(
log 𝑛
𝑛

)
, as this term becomes negligible for practical blocklengths.

The expression clearly shows how the achievable rate relates to capacity 𝐶, blocklength 𝑛, error
probability 𝜖 , and channel dispersion 𝑉 . This approximation is termed the normal approximation
due to its relation to the Gaussian (or normal) distribution. However, whilst this approximation
is accurate for many practical scenarios, it may lose precision for very short block lengths (e.g.,
𝑛 < 100) or when extremely low error probabilities are required (e.g., 𝜖 < 10−5) [97]. Finally,
given 𝑅𝑡 , the packet error probability 𝜖 (block error probability) can be approximated as:

𝜖 ≈ 𝑄
(
𝑛𝐶 − 𝑘
√
𝑛𝑉

)
. (2.26)
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Furthermore, Yang et al. extended the normal approximation (2.25) to estimate finite-length code
performance across fading channels as follows [97, 98]:

𝜖 ≈ E


𝑄

©«
𝑛
(
log2(1 + 𝛾)

)
− 𝑘√︂

𝑛

(
log2

2 𝑒

2 (1 − 1
(1+𝛾)2 )

) ª®®®®¬

, (2.27)

where the expectation is taken for the distribution of the instantaneous (random) SNR, 𝛾. This
approach assumes perfect channel state information (CSI) at the receiver. The extension aims
to predict code performance more accurately in realistic wireless environments with fluctuating
channel conditions. In contrast to previous approximations that considered only static channels, this
formulation explicitly accounts for the random nature of wireless fading channels. By incorporating
fading effects through expectation over the SNR distribution, this method provides a valuable
tool for analysing communication system performance under practical conditions, particularly in
scenarios where channel conditions vary significantly over time.

Furthermore, while substantial research has focused on AoI and delay analysis under the
traditional assumption of infinite block length, considerably less attention has been devoted to AoI
analysis and optimisation in the context of finite block length. Addressing this gap, the AoI metric
for short packet communication was investigated in [99–103]. This research specifically addressed
monitoring and automation systems that transmit short packet status updates, where finite block
length is particularly relevant. Conventional Shannon-based systems can achieve arbitrarily low
error rates by maintaining coding rates below channel capacity. In contrast, short packet systems
exhibit persistent errors, with error rates strongly dependent on packet length, as described in
equations (2.26) and (2.27). Recognising this fundamental difference, the authors of [99–103]
examined the critical question: What is the impact of packet length on AoI performance in short
packet systems transmitting status updates? Their findings revealed the existence of an optimal
packet length that minimises AoI metrics, providing valuable insights for the design of systems
where AoI is a key performance indicator.

2.4 AoI in SWIPT systems

SWIPT is a key enabling technology for future wireless communication systems, offering improved
spectral efficiency and addressing energy constraints in IoT devices. This technique allows receivers
to simultaneously harvest energy and decode information using various strategies and receiver
architectures. Traditionally, SWIPT systems are classified into four types based on receiver
architectures: separate antenna architecture, time switching-based SWIPT (TS-SWIPT), power
splitting-based SWIPT (PS-SWIPT) and antenna switching-based SWIPT [8–10, 104, 105].

The separate antenna architecture uses distinct antennas for EH and information decoding (ID),
providing a simple approach that does not affect ID performance. However, its main drawback is
that it is not suitable for single-antenna sensor devices. Antenna switching architecture, similar
to the separate antenna approach, uses sets of antennas for EH and ID, allowing allocation based
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on energy needs. It can be adapted with PS-SWIPT for optimised power allocation but shares the
limitation of being unsuitable for single-antenna devices [106].

PS-SWIPT shares the same antenna for EH and ID, using a special circuit to divide received
signal power between the two processes. This allows for the adjustment of the energy resources
between EH and ID [107]. The harvested energy in PS-SWIPT, denoted as 𝐸𝑃𝑆 , is expressed as:

𝐸𝑃𝑆 =
𝜂𝑃(1 − 𝜌)|𝐻𝑘 |2𝑇

𝑑𝜅
, (2.28)

where 𝜂 is the EH efficiency, 𝑃 is the transmitted power, 𝜌 is the power splitting ratio, 𝐻𝑘 is
the channel coefficient, 𝑇 is the transmission time, 𝑑 is the distance and 𝜅 is the path loss exponent.
The SNR for PS-SWIPT, 𝛾𝑃𝑆 , is given by:

𝛾𝑃𝑆 =
𝑃𝜌 |𝐻𝑘 |2𝑑−𝜅

𝑁0
, (2.29)

where 𝑁0 is the noise power. TS-SWIPT also shares the same antenna for EH and ID but
uses a special circuit to periodically switch between the two processes. The harvested energy in
TS-SWIPT, 𝐸𝑇𝑆 , is expressed as:

𝐸𝑇𝑆 =
𝜂𝑇𝑡 (1 − 𝜁𝑇 )𝑃 |𝐻𝑘 |2

𝑑𝜅
, (2.30)

where 𝜁𝑇 is the time allocation ratio for ID and 𝑇𝑡 is the total transmission time. The SNR for
TS-SWIPT, 𝛾𝑇𝑆 , is given by:

𝛾𝑇𝑆 =
𝑇𝑡 (1 − 𝜁𝑇 )𝑃 |𝐻𝑘 |2𝑑−𝜅

𝑁0
. (2.31)

All existing SWIPT techniques suffer performance degradation due to resource allocation
for EH purposes. To address these limitations, novel approaches have been proposed, including
Modulation-based SWIPT and Frame-based SWIPT. These techniques explore unique ways to
allocate specific sets of symbols for EH and ID, potentially improving system performance [108].

M-SWIPT adopts a symbol-wise EH technique and can be used with both time-division multiple
access and frequency-division multiple access (FDMA) signal transmission techniques. Frame-
based SWIPT allocates specific symbols for EH and the remaining symbols for ID but can only be
adopted with FDMA. Both techniques offer the additional benefit of exploiting symbols allocated
for EH for other signal processing applications [109].

Furthermore, SWIPT-enabled two-way communication systems were investigated in [10, 110,
111]. In the real world, these types of SWIPT-enabled two-way relays can be employed as roadside
units in vehicular communication networks and as UAV relays in UAV-assisted wireless networks.
However, the incorporation of EH into wireless networks introduces additional complexity [112,
113]. In shared environments, devices contend for both data transmission and EH opportunities.
This heightened competition can give rise to conflicts over resource allocation, consequently
affecting the reliability and timeliness of information [25, 114]. Fluctuations in energy availability
for devices relying on harvesting further exacerbate the issue, potentially resulting in increased data
packet loss and diminished overall communication reliability [20].
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Prioritising EH over immediate information transmission introduces trade-offs, which may
lead to delays. The storage of data until sufficient energy is harvested can also take up limited
buffer space, causing further delays and potentially impacting the freshness of information. Thus,
SWIPT enabled cooperative communication systems should be investigated by integrating finite
block-length information theory and AoI to analyse how resource sharing will affect information
freshness and reliability. However, the AoI analysis for EH relay networks is relatively novel. Most
of the existing research was conducted on simple one-way relay networks or long-block-length
transmission [115–118].

Few studies have investigated the timeliness of SWIPT systems using conventional timeliness
metrics. For example, in [119], the authors discussed a latency-aware multiantenna SWIPT system
with battery-constrained receivers. In their work, the authors jointly considered the interdependence
of latency andbattery dynamics in SWIPT-enabled systems. They proposed radio resource allocation
schemes that enable the system to meet latency and EH requirements at the user equipment while
preventing excessive battery depletion. However, these works on SWIPT have mainly focused on
improving energy efficiency and latency, with less emphasis on the freshness and reliability of the
information.

The AoI has been widely used as a performance metric to quantify the freshness of information
over time. In recent times, few attempts have been made to apply AoI as a performance metric in
SWIPT-enabled wireless communication systems. In [25], the performance of the AoI is examined
in a SWIPT-enabled cooperative wireless communication system. The authors have calculated
the AoI performance of the relay node for both the time switching and power splitting protocols.
However, it is important to note that in [25] authors did not pay significant attention to transmission
errors and the specific policies employed for packet transmission.

In [120], the AoI was employed to measure the freshness of the information in a SWIPT-enabled
re-configurable intelligent surfaces (RIS)-assisted communication network. The authors of [121]
discussed the AoI as a performance metric for a sensor network equipped with wireless power
transfer. However, both of these works have given little attention to the reliability of the transmissions
and the transmission policies that are considered to reduce AoI. In addition, the authors of [122]
investigated information freshness in a SWIPT-enabled real-time monitoring system where several
source nodes are responsible for delivering update packets to a single destination node. This work
further examined the optimal online sampling policy for the proposed system configuration, aiming
to minimise the average weighted sum of AoI values for various physical processes at the destination
node. However, the vast majority of the existing literature related to the AoI and SWIPT regards
asymptotic, in terms of block-length, analysis.

On the other hand, Ref. [123–125] analysed the performance of SWIPT-enabled EH cooperative
communication systems using finite block-length information theory. However, these existing works
related to finite block-length information theory and SWIPT also do not analyse the freshness of
the information using AoI. Alternatively, simple communication scenarios were considered in
these works. Current literature appears to lack a comprehensive analysis of information freshness
in SWIPT-based cooperative wireless networks using finite block-length theory and AoI.
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2.5 AoI in Semantic Wireless Communication Systems

In recent years, the field of wireless communication has undergone a substantial transformation
due to the emergence of semantic communication principles, which have outperformed traditional
techniques [19, 126–131]. Instead of focusing primarily on the accurate transmission of individual
symbols or bits, semantic communication prioritises the conveying of intended meaning and context
from the information source.

As early as 1949, Weaver [132] introduced the notion of transmitting messages with meaningful
intent, expanding Shannon’s communication theory by introducing semantic and effective-based
communication systems. While the semantic communication system aims to convey semantic
information, an effective system focuses on efficient and goal-oriented design. Initially, semantic
communication and goal-oriented communication did not receive significant attention, largely due
to the urgent need for Shannon’s reliable and high-rate communication methods and the limited
computational power to develop semantic-aware communication systems [133–136].

Today’s wireless mobile communication systems, such as 5G have significantly improved their
data transmission speeds, surpassing previous generations. Current progress in wireless commu-
nication research brings the achievable rate of current wireless communications systems closer to
the theoretical limits defined by Shannon’s theorem using more efficient channel coding schemes
such as Polar codes and low-density parity-check code (LDPC) codes [137–139]. Additionally,
various innovative applications have emerged in wireless communications, including IoT applica-
tions, industrial automation, smart agriculture, environmental and healthcare monitoring and smart
sensor networks [16, 140]. However, integrating these applications into wireless communication
networks results in a surge of data, potentially reaching zettabyte scales [141]. Semantic-based
communication approaches offer a potential solution by focusing on the meaning of the transmitted
information. This involves extracting semantic meanings from data whilst filtering out unnecessary
information. This process allows efficient data compression whilst retaining essential semantic
content. Notably, this communication approach is particularly robust, even in challenging con-
ditions with weak signals compared to background noise (low SNRs), making it well-suited for
applications demanding high reliability.

One of the strategies for developing a semantic communication system is treating it as a joint
source-channel coding (JSCC) problem [142–144]. JSCC has been a long-standing challenge in
communication and coding theory. Recent breakthroughs have demonstrated significant perfor-
mance improvements over traditional systems that treat source and channel coding separately. This
improvement is especially pronounced in scenarios where low latency and low power consumption
are critical. Recent advances in JSCC are mainly due to the integration of deep learning techniques.
Deep learning-based JSCC schemes have been shown to outperform traditional JSCC methods.
Several studies have investigated the application of deep learning-based JSCC, particularly DJSCC,
for image transmission [145–148]. This approach has shown promising results in enhancing the
efficiency and robustness of semantic communication systems.

Applying the AAoI metric has demonstrated substantial improvements in data freshness in
various applications [25, 149]. However, it is important to acknowledge the inherent limitations
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associated with this metric. Specifically, the AoI metric relies solely on temporal timestamps to
quantify the freshness of data, disregarding the actual information content in the transmitted packets.
This limitation gives rise to scenarios in which the AoI metric may not adequately capture the
real-world significance of transmitted data. It is especially relevant in contexts where the content
itself carries more weight than its temporal arrival.

After recognising the limitations of the AoI concept, researchers introduced several alternative
interpretations of the age concept. For example, a new performance metric called the "age of
incorrect information" is introduced in [150]. This extended version of the AoI metric addresses
the limitations of both the AoI and established error penalty methods by broadening the concept
of timely updates to encompass updates that are not only recent yet also considered "informative".
In this context, "informative" refers to updates that deliver fresh and accurate information to the
receiver. In [29], another metric termed the Value of Information of Update is presented. This
metric effectively measures the reduction in the cost of update delay that occurs when an update is
received.

Another context-based AoI measurement called the "Urgency of Information" was introduced
in [151] to assess the promptness of status updates. Unlike AoI, this metric takes into account the
changing contextual details and the evolving nature of status changes. This enhanced approach
allows the investigation of adaptive status update strategies based on contextual information.
Additionally, it facilitates better remote monitoring and control. Furthermore, most context-based
AoI metrics often depend on the specific application in which they are used.

Conventional approaches to measuring timeliness of the information often overlook the semantic
meaning of data, potentially leading to poor performance. Thus, in semantics-based communication
paradigms, the AoI has emerged as a crucial performance metric for quantifying the timeliness of
information in wireless communication systems [152]. The AoI was first introduced for semantic
communication in [152], which highlighted the importance of data significance in achieving
communication objectives. In addition, the authors of [152] addressed the challenges associated
with minimising AoI in simple semantic-based wireless communication networks. They offer
valuable insights into an optimal transmission strategy employing a randomised threshold policy.
Furthermore, this work presents a robust method for determining the optimal parameters.

In [153], the authors investigated the dynamics of AoI in task-oriented wireless communication.
Their aim is to efficiently execute tasks by using the transmitting data at the receiver. Through
a jointly trained encoder-decoder pair that takes into account channel effects, data samples are
transformed into compact feature vectors, which reduces the need for lengthy transmission blocks
while reducing latency. The decoder, in this context, performs tasks such as classification rather
than reconstructing the transmitted content at the receiver. The study demonstrates a trade-off:
increased channel usage improves classifier accuracy, however, extends transmission time. The
concept of the "peak age of task information (PAoTI)" provides insights into this accuracy-latency
relationship. Design guidelines for task-oriented communications are derived, including a dynamic
update mechanism to adapt channel usage based on prevailing conditions, thus reducing PAoTI.

As semantic wireless communication systems continue to evolve, addressing the challenges of
maintaining data freshness whilst optimising for semantic content will be crucial. The integration
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of AoI metrics with semantic communication principles offers a promising direction for future
research in this field, particularly for IoT applications, autonomous vehicles, UAV communication
and smart sensor networks, where the rapid exchange of time-sensitive information is critical [87].
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Chapter 3

AoI in URLLC-enabled UAV Wireless
Communications

3.1 Introduction

This chapter considers an UAV communication network, where UAV operate as an aerial mobile
relay between a source and a destination of the network. To capture the freshness of the information
at the destination node, AoI is considered. In addition, a short-packet communication scheme
maintains low latency in the proposed UAV wireless communication system. The finite block-length
theory investigates the performances of short-packet communications schemes in the UAV-assisted
wireless communications system. In this chapter, the AAoI is estimated by applying the SHS
model. The SHS model comprises discrete states, which represent events that reset the AoI process
and continuous dynamics that represent linearly growing age processes. Finally, a closed-form
expression for the AAoI of the proposed UAV wireless communication system is derived and it can
be used to estimate the optimal altitude, block length and other parameters.

3.1.1 Contributions

As per the best of the author’s knowledge, this is the first study that investigates the AoI of an
URLLC-enabled UAV wireless network. In this chapter, a closed-form expression for the AoI in
a UAV relay communication network is derived. Furthermore, our study enables us to determine
the optimal altitude, block-length, transmission power and update generation rate that guarantee
the freshness of the received information at the destination. Moreover, the SHS analysis in [55]
has been further extended for wireless systems with transmission errors. Additionally, this work
builds upon previous research on URLLC-enabled decode and forward relay [18] by analysing UAV
communication networks, which have different channel statistics compared to terrestrial wireless
channels. Due to erroneous transmission in the relay system, it is not easy to use a graphical method
in this analysis. Hence, the SHS approach is adopted and the AoI process is modeled as a stochastic
hybrid process that considers both continuous and discrete behaviours of the AoI process.
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Figure 3.1: System model of UAV communication network

3.1.2 Organization

The chapter is organised as follows: Section 3.2 introduces the URLLC-enabled UAV relay system
and a closed-form equation for AAoI is derived. Subsequently, Section 3.3 presents some numerical
results and the system performance is analysed. Finally, the work is concluded in Section 3.4.

3.2 System Model

As shown in Figure 3.1, an URLLC-enabled UAV relay network is considered, where the UAV
is placed at an altitude of 𝐻 and acts as a wireless relay between the source (𝑆) node and the
destination (𝐷) node. It is assumed that the altitude of the 𝑆 and the 𝐷 are negligible as compared
to UAV amplitude. The distance between 𝑆 and 𝐷 is 𝑑𝑆,𝐷 and it is expected that UAV aerial
wireless relay node can freely move between 𝑆 and 𝐷, while the distance between 𝑆 and UAV is
𝑑𝑆,𝑈𝐴𝑉 = 𝛽𝑑𝑆,𝐷 and the distance between UAV relay and 𝐷 is denoted by 𝑑𝑈𝐴𝑉,𝐷 = (1−𝛽)𝑑𝑆,𝐷 ,
where 𝛽 denotes the distance dividing factor. The elevation angle of UAV is 𝜃 and if it is measured
from the 𝑆, 𝜃 = 𝜃1 = arctan( 𝐻

𝛽𝑑𝑆,𝐷
) and from the 𝐷, 𝜃 = 𝜃2 = arctan( 𝐻

(1−𝛽)𝑑𝑆,𝐷 ). In this proposed
UAV-assisted wireless communication scheme, each transmission time block is divided into two
distinct time slots. In the literature, several cooperative communication techniques have been
proposed for the UAV-enabled relay communication networks; among them, decode-and-forward
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(DF) is one of the most commonly used techniques, where the DF technique is deployed in this
system. The source sends data to the UAV relay during the first time span. During the second time
slot, the UAV decodes and re-transmits the received data to the destination. It is assumed that no
direct communication exists between the source and the destination. The transmitted signal by the
source, the received signal at the UAV realy, the transmitted signal by the UAV and the received
signal at the destination are denoted by 𝑋1, 𝑌1, 𝑋2 and 𝑌2, respectively. The received signal at each
communication node can be written as

𝑌1 =
√︁
𝑃𝑆𝐻𝑆,𝑈𝐴𝑉𝑋1 +𝑊𝑆,𝑈𝐴𝑉 , (3.1)

𝑌2 =
√︁
𝑃𝑈𝐴𝑉𝐻𝑈𝐴𝑉,𝐷𝑋2 +𝑊𝑈𝐴𝑉,𝐷 , (3.2)

where 𝐻𝑖 𝑗 is the channel coefficient of the channel between node 𝑖 to node 𝑗 where 𝑖 ∈ {𝑆,𝑈𝐴𝑉}
and 𝑗 ∈ {𝑈𝐴𝑉, 𝐷}. The 𝑊𝑖 𝑗 denotes the independent and identically distributed AWGN of the
channel with zero mean and 𝜎2 variance.

3.2.1 Aerial Communication Channel Characterisation

It is important to design a new statistical propagation model to predict path loss, shadowing and
fading of aerial communication in UAV-enabled communication. It is different from the common
propagation model, which are used for terrestrial communication networks. Basically, this is based
on environment properties [154, 155]. Normally, UAV communications may provide strong LoS
paths between the UAV and transmission nodes in the ground and it strength the received signal
level compared to the NLoS condition. Hence, it is important to calculate LoS probability to
develop a proper channel model for the UAV communication system. Besides the channel statistics,
it is important to consider how UAV is used as an aerial communication node.

3.2.1.1 Line of sight probability

The possibility that a LoS channel exists between each node is determined by adding the probabilities
that each building in the propagation pathway is lower than the height of the ray connecting the two
nodes. The height of the ray at the obstruction point can be calculated as

ℎLoS = 𝑙𝑜𝑏 tan (𝜃) , (3.3)

where 𝑙𝑜𝑏 is distance from the S (or D) to the obstacle. If structures in the ground are evenly spaced,
number of structures between two nodes can be estimated. Assuming area between two nodes has
flat or constant slope, the probability that a LoS ray exists 𝑃𝐿𝑜𝑆 is can be calculated as follows:

𝑃LoS =
𝑏𝑟∏
𝑏=1

P(ℎ < ℎLoS), (3.4)

where ℎ is the structure height and 𝑏𝑟 is the number of buildings crossed by the ray. The expected
number of buildings passed per km 𝑏1 is given by:

𝑏1 =
√︁
𝑍𝐵𝑀𝐵, (3.5)

27



CHAPTER 3. AOI IN URLLC-ENABLED UAV WIRELESS COMMUNICATIONS

where 𝑍𝐵 is the ratio of land area covered by buildings to total land area and 𝑀𝐵 is the average
number of buildings per unit area (buildings/km2). Then, 𝑏𝑟 is given by:

𝑏𝑟 = floor
(
𝑟𝑖 𝑗𝑏1

)
, (3.6)

where 𝑟𝑖 𝑗 , (km), 𝑖 ∈ {𝑆,𝑈𝐴𝑉} , 𝑗 ∈ {𝑈𝐴𝑉, 𝐷} is the horizontal distance between the transmitter
and the receiver and the floor function guarantee that an integer number of terms (not greater than
the arguments of the function) are contained in (3.4). The LoS probability can be expressed as
closed form expression as follows [156]:

𝑃(LoS) =
𝑏𝑟−1∏
𝑘=0

1 − exp

−
(

(𝑘+ 1
2 )𝑟𝑖 𝑗 tan 𝜃
𝑏𝑟

)2

2ℎ2
𝑑


 , (3.7)

where ℎ𝑑 is a scale parameter that describes the buildings’ heights distribution that follows Rayleigh
probability distribution. Akram et al. [157] approximated (3.7) to a modified Sigmoid function as
follows:

𝑃LoS(𝜃) =
1

1 + 𝐴𝑠 exp(−𝐵𝑠(𝜃 − 𝐴𝑠))
, (3.8)

where 𝐴𝑠 and 𝐵𝑠 are S-curve parameters that totally depend on 𝑍𝐵, 𝑀𝐵 and ℎ𝑑 constants. In this
chapter, this approximation is employed for our analysis due to the complexity of (3.7).

3.2.1.2 Large-Scale Fading

In the UAV communication, large-scale channel statistics such as path loss and shadow fading
is effected by the LoS probability. Hence, it is important to derive relationship between LoS
probability and large-scale channel gain. The additional loss incurred on top of the free space path
loss due to the shadowing and scattering caused by buildings and trees is referred to as excessive
path loss, which has a Gaussian distribution. However, instead of focusing on its random behaviour,
its mean value is considered in this study. Let 𝛼𝑖 𝑗 be the large-scale channel gain of channel between
each node and it can be obtained as follows:

(3.9)−10 log(𝛼𝑖 𝑗) = 20 log(𝐻 csc (𝜃)) + 20 log(
4𝜋 𝑓𝑐
𝑐

) + 𝜂𝑁𝐿𝑂𝑆 +
𝜂𝐿𝑂𝑆 − 𝜂𝑁𝐿𝑂𝑆

1 + 𝐴𝑠 exp(−𝐵𝑠(𝜃 − 𝐴𝑠)
,

where 𝑓𝑐 and 𝑐 are the carrier frequency (Hz) and the speed of the light (m/s), respectively. 𝜂𝐿𝑜𝑆
and 𝜂𝑁𝐿𝑜𝑆 are the expectation of the additional environment-dependent excessive path loss for
the LoS and NLoS components, respectively. In this analysis, it is assumed that all three nodes
are stationary when communicating with each other. Hence, the Doppler effect is not taken into
account.

3.2.1.3 Small-Scale Fading Statistics

Besides large-scale channel fading characterization, it is essential to investigate the impact of
multi-path propagation and small-scale channel characterization of wireless channels. The Rician
fading model is often used for UAV communication due to its characteristic nature. The small-scale
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channel gain 𝑔𝑖 𝑗 is denoted as 𝑔𝑖 𝑗 = |𝐻2
𝑖 𝑗
|, where 𝐻𝑖 𝑗 denotes the Rician fading channel coefficient

and the distribution of 𝑔𝑖 𝑗 follows a non-central chi-square probability distribution. Then, the
probability density function (PDF) of the small-scale channel gain is given by:

𝑓𝑔𝑖 𝑗 (𝑧) =
(
𝐾 𝑓 + 1

)
𝑒−𝐾 𝑓

�̄�𝑖 𝑗
𝑒

−(𝐾 𝑓 +1)𝑧
�̄�𝑖 𝑗 𝐼0

©«2

√︄
𝐾 𝑓

(
𝐾 𝑓 + 1

)
𝑧

�̄�𝑖 𝑗

ª®¬ , (3.10)

where 𝑧 ≥ 0, �̄�𝑖 𝑗=1, 𝐼0 (·) is the zero-order modified Bessel function of the first kind and 𝐾 𝑓 is
the Rician factor that depends on the ratio between the power of the LoS component and NLoS
components. Then, Rician factor can be expressed as follows [158, 159]:

𝐾 𝑓 =
𝑃LoS (𝜃)

1 − 𝑃LoS (𝜃)
. (3.11)

3.2.1.4 Instantaneous SNR

In this system, transmission power at each transmission node is fixed as 𝑃𝑖 and the noise power at
each receiving node is denoted as 𝜎2 . The instantaneous SNR at each receiving node 𝛾 𝑗 is given
by:

𝛾 𝑗 =
𝛼𝑖 𝑗𝑔𝑖 𝑗𝑃𝑖

𝜎2 . (3.12)

3.2.2 Decoding Error Probability Under the Short Packet Communication

In this system, it is assumed that a short packet channel coding scheme is used for encoding. Hence,
finite block length information theory was used to evaluate the decoding error probability at the
receiving node [90, 160]. The fading coefficients are expected to be constant over the duration of
each transmission block in this system and the receiver has perfect channel state information. Then,
the expectation of the decoding error probability at the receiving node, 𝜀 𝑗 can be calculated as
follows, according to the PPV:

𝜀 𝑗 = E


𝑄

©«
𝑛𝑖, 𝑗

(
log2(1 + 𝛾 𝑗)

)
− 𝑘𝑏√︂

𝑛𝑖, 𝑗

(
log2

2𝑒
2 (1 − 1

(1+𝛾 𝑗 )2 )
) ª®®®®¬


, (3.13)

where E [·] is the expectation operator and 𝑄(·) is the Q-function. It can be defined as 𝑄(𝑥) =
1√
2𝜋

∫∞
𝑥
𝑒−

𝑡2
2 𝑑𝑡. It is assumed that 𝑘𝑏 number of information bits are contained in a 𝑛𝑖, 𝑗 bit length

block. Moreover, under the Rician fading block fading conditions, 𝜀 𝑗 can be expressed as

𝜀 𝑗 =
∫∞

0
𝑓𝛾 𝑗 (𝑧)𝑄

©«
𝑛𝑖, 𝑗

(
log2(1 + 𝛾 𝑗)

)
− 𝑘𝑏√︂

𝑛𝑖, 𝑗

(
log2

2𝑒
2 (1 − 1

(1+𝛾 𝑗 )2 )
) ª®®®®¬
𝑑𝑧, (3.14)

where 𝑓𝛾 𝑗 (𝑧) denotes the PDF of the 𝛾 𝑗 and it is given by:

𝑓𝛾 𝑗 (𝑧) =
(
𝐾 𝑓 + 1

)
𝑒−𝐾 𝑓

�̄� 𝑗
𝑒

−(𝐾 𝑓 +1)𝑧
�̄� 𝑗 𝐼0

©«2

√︄
𝐾 𝑓

(
𝐾 𝑓 + 1

)
𝑧

�̄� 𝑗

ª®¬ , (3.15)
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where �̄� 𝑗 is expectation of SNR at node 𝑗 and it can be calculated as �̄� 𝑗 = 𝑃𝑖𝛼𝑖 𝑗

𝜎2 . Due to the
complexity of the Q-function, it is difficult to get a closed-form expression for the overall decoding
error probability. Thus, using the approximation technique given in [161] and [94], (3.14) can be
approximated as follows:

𝜀j ≈
∫∞

0
𝑓𝛾j(𝑧)Θj(𝑧)𝑑𝑧, (3.16)

where Θ 𝑗(𝑧) denotes the linear approximation of 𝑄
©«

𝑛𝑖, 𝑗 (log2(1+𝛾 𝑗 ))−𝑘𝑏√︄
𝑛𝑖, 𝑗

(
log22𝑒

2 (1− 1
(1+𝛾𝑗 )2

)
) ª®®®¬, this can be expressed

as [94]

Θ 𝑗(𝛾 𝑗) =


1, 𝛾 𝑗 ≤ 𝜙 𝑗 ,

1
2 − 𝛽 𝑗

√
𝑛𝑖, 𝑗(𝛾 𝑗 − 𝜓 𝑗), 𝜙 𝑗 < 𝛾 𝑗 < 𝛿 𝑗 ,

0, 𝛾 𝑗 ≥ 𝛿 𝑗 ,
(3.17)

where 𝛽 𝑗 = 1

2𝜋

√︂
2
𝑘𝑏
𝑛𝑖, 𝑗 −1

, 𝜓 𝑗 = 2
𝑘𝑏
𝑛𝑖, 𝑗 − 1, 𝜙 𝑗 = 𝜓 𝑗 − 1

2𝛽 𝑗
√
𝑛𝑖, 𝑗

and 𝛿 𝑗 = 𝜓 𝑗 + 1
2𝛽 𝑗

√
𝑛𝑖 𝑗

. Using

approximation in (3.17) and [162] the 𝜀 𝑗 is calculated as

𝜀j ≈ 𝛽 𝑗
√
𝑛𝑖, 𝑗

∫ 𝛿 𝑗

𝜙 𝑗

𝐹𝛾j(𝑧)𝑑𝑧 ≃ 𝐹𝛾 𝑗
(
𝜓j

)
, (3.18)

where 𝐹𝛾 𝑗 is the cumulative distribution function (CDF) of the 𝛾 𝑗 and it can be derived as [163]
follows:

𝐹𝛾j

(
𝑧, 𝐾 𝑓 , �̄� 𝑗

)
=

∫ 𝑧
0
𝑓𝛾 𝑗 (𝑧) 𝑑𝑧

= 1 −𝑄1
©«
√︁

2𝐾 𝑓 ,

√︄
2
(
𝐾 𝑓 + 1

)
𝑧

�̄� 𝑗

ª®¬ ,
(3.19)

where 𝑄1 (·, ·) is first order Marcum Q-function. Thus, 𝜀 𝑗 can be calculated as

𝜀j = 1 −𝑄1
©«
√︁

2𝐾 𝑓 ,

√︄
2
(
𝐾 𝑓 + 1

)
𝜓j

�̄� 𝑗

ª®¬ , (3.20)

However, due to complexity of Marcum Q-function, semi-linear approximation is used to get
closed-form equation for the error probability as follows [164]:

𝜀j ≃ Ξ
©«
√︁

2𝐾 𝑓 ,

√︄
2
(
𝐾 𝑓 + 1

)
𝜓j

�̄� 𝑗

ª®¬
≃ Ξ (Φ,Ψ) ,

(3.21)

where Ξ(·, ·) is the semi-linear approximation of the 1−𝑄1 (·, ·) and it can be calculated as

Ξ (Φ,Ψ) =


0, if Ψ < 𝑐1,

Ψ0𝑒
− 1

2 (Φ2+Ψ2
0) 𝐼0 (ΦΨ0) (Ψ −Ψ0) +

1 −𝑄1 (Φ,Ψ0) if 𝑐1 ≤ Ψ ≤ 𝑐2,

1, if Ψ > 𝑐2,

(3.22)
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with

Ψ0 =
Φ +

√
Φ2 + 2
2

,

𝑐1 (Φ) = max

(
0,Ψ0 +

𝑄1 (Φ,Ψ0) − 1

Ψ0𝑒
− 1

2 (Φ2+Ψ2
0) 𝐼0 (ΦΨ0)

)
,

and

𝑐2 (Φ) = Ψ0 +
𝑄1 (Φ,Ψ0)

Ψ0𝑒
− 1

2 (Φ2+Ψ2
0) 𝐼0 (ΦΨ0)

.

When the UAV relay decodes a transmitted block with an error, it may cause transmission failure
under the DF relay scheme. Furthermore, even if the UAV correctly decodes the transmitted block,
a decoding error at the destination node may cause transmission failure. Then, the overall decoding
error probability 𝜀 can be written as [94]

𝜀 = 𝜀𝑈𝐴𝑉 + 𝜀𝐷(1 − 𝜀𝑈𝐴𝑉 ), (3.23)

where 𝜀𝑈𝐴𝑉 is the block error probability at the UAV and 𝜀𝐷 is the block error probability at the
destination.

3.2.3 AAoI of the UAV Communication System

This section estimates the AAoI at the destination (D) of the UAV relay system. The status update
packets are generated at the S and transmitted to the D using UAV relay system. It is considered
that mean update generate rate at the S is 𝜆𝑎 and UAV relay network transmit update at rate 𝜇. It
is assumed that an update in transmission has an error with probability 0 ≤ 𝜀 < 1 and it can be
calculated using (3.23). The mean update transmission rate 𝜇 is given by inversely propositional to
the mean transmission time per update E [𝑇] in the UAV relay network and it is given by:

1
𝜇

= E [𝑇] = 𝑛𝑇𝑠 (3.24)

where 𝑇𝑠 and 𝑛 denotes symbol duration and total block-length, respectively. If the generation time
of the freshest update received at time stamp 𝑡 is 𝑔(𝑡), then AoI (𝑥0(𝑡)) can be defined as a random
process as

𝑥0 (𝑡) = 𝑡 − 𝑔(𝑡). (3.25)

As illustrated in the Figure 3.2, it is assumed that at 𝑡 = 0 the measurements of the AoI starts and
the AoI at the D is set to 𝑥0(0) = 𝑋0. The S generate updates at time stamps g1, g2, ..., and the
D receive these updates at time stamps z1, z2, ..., if update successfully transmitted by the S and
decoded by the D. As illustrated in Figure 3.2, data update 𝑖 is transmitted from the S at time stamp
𝑡 = 𝑔𝑖 and it is successfully delivered to the D at time stamp 𝑧𝑖 = 𝑔𝑖 + 𝑛𝑇𝑠. Therefore, if update
packet delivered successfully, at the time 𝑧𝑖 , the AoI at the D can be estimated as

𝑥(𝑧𝑖) = 𝑛𝑇𝑠 . (3.26)

AoI increases linearly until the next update is successfully delivered to the D. As an example, one
packet fails to be decoded at time 𝑧2, hence, 𝑥0(𝑡) continues to increase linearly. Similarly, when
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there is an update (packet) in transmission, new updates that arrive at the S are blocked and cleared,
as an example, update generated at the time 𝑔4 is not transmitted since at that time the previous
update which is generated at the time 𝑔3 still under the transmission. Hence, the update generated
at the time 𝑔4 does not affect the AoI process. For the considered time period 𝑇𝑐, time average AoI
can be computed using the area under 𝑥0(𝑡). Similarly, the time average age Δ𝑇𝑐 of the proposed
UAV relay system can be estimated as

Δ𝑇𝑐 =
1
𝑇𝑐

∫𝑇𝑐
0
𝑥0(𝑡)𝑑𝑡. (3.27)

Similar to the work presented in [29, 55], Δ𝑇𝑐 tends to ensemble average age (AAoI) Δ𝐴𝐴𝑜𝐼 when
𝑇𝑐 → ∞, i.e., which can be expressed as

Δ𝐴𝐴𝑜𝐼 = E [𝑥0] = lim
𝑡→∞

E [𝑥0 (𝑡)] = lim
𝑇𝑐→∞

Δ𝑇𝑐 . (3.28)

In this chapter, SHS techniques are used to evaluate E [𝑥0], which is referred to as the AoI at the
D. Under the SHS analysis, the AoI process is modeled as combination of continuous states x(𝑡)
and discrete states 𝑞(𝑡). Where, discrete states capture transmission status of the UAV relay that
can be represented using Markov chain and the state space of the Markov chain is (𝑞 (𝑡) , x (𝑡)),
where 𝑞 (𝑡) ∈ Q = {0, 1}, 𝑞 = 0 indicates that UAV relay is idle and 𝑞 = 1 indicates that
UAV relay is in transmission state. The evaluation of the age process at D is represented using

𝒏𝑻𝒔

𝒕

𝒙𝟎(𝒕)

𝑿𝟎

𝒈𝟏 𝒈𝟓𝒈𝟒𝒈𝟑𝒈𝟐 𝒛𝟓𝒛𝟏 𝒛𝟐 𝒛𝟑

𝒏𝑻𝒔

Figure 3.2: Evolution of AoI (𝑥0(𝑡)) with the time
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continuous vector x (𝑡) = [𝑥1 (𝑡) , 𝑥0 (𝑡)] where 𝑥0 (𝑡) tracks the age at the D that sees update
that complete transmission without error and 𝑥1 (𝑡) specifies what 𝑥0 (𝑡) would become if the
packet-in-transmission is delivered. The SHS model for the AoI process at D the can be illustrated
using a graph (Q,L) which contains two discrete states (transmission states) of the UAV relay as
nodes of the graph and each transaction between transmission states of the UAV relay is represented
as direct edge as in Figure 3.3. The transaction between the discrete states 𝑞𝑙 → 𝑞′

𝑙
,∀𝑙 ∈ L and

their effect on the continuous state x (𝑡) are summarised in Table 3.1 using linear mapping of the
form x′ = xA𝑙. In addition, v𝑞𝑙A𝑙 included in this table. The transactions presented in Table 3.1
can be explained as follows:

• 𝑙 = 1 : An update arrives at the idle system. With the arrival of an update, the S starts
transmission of the update, which is received and 𝑥′0 = 𝑥0 is unchanged because the arrival
of the update to the source does not yield an age reduction at the D until it is successfully
delivered to the destination. However, 𝑥′1 = 0 since the arriving update is fresh and its age is
zero at the instant.

• 𝑙 = 2 : An update successfully completes its transmission and is delivered to the D. In this
situation, 𝑥′0 = 𝑥1, corresponding to the age at the D being reset to the age of the update that
just completed transmission. Moreover, 𝑥′1 = 0 since 𝑥1 becomes irrelevant when the UAV
relay enters the state 0.

• 𝑙 = 3 : An update completes its transmission with an error. In this situation, 𝑥′0 = 𝑥0

is unchanged because unsuccessful transmissions do not yield an age reduction at the D.
Moreover, 𝑥′1 = 0 since 𝑥1 becomes irrelevant when UAV relay enters the state 0.

Figure 3.3: The SHS Markov Chain for the UAV relay system
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Table 3.1: Transitions Rate for the Markov Chain in UAV Relay System

𝑙 𝑞𝑙 → 𝑞′
𝑙

𝜆 (𝑙) xA𝑙 v𝑞𝑙A𝑙
1 0 → 1 𝜆𝑎

[
0 𝑥0

] [
0 𝜐00

]
2 1 → 0 𝜇 (1 − 𝜀)

[
0 𝑥1

] [
0 𝜐11

]
3 1 → 0 𝜇𝜀

[
0 𝑥0

] [
0 𝜐10

]
The evolution of x (𝑡) at each discrete state 𝑞 (𝑡) = 𝑞 is decided by the b𝑞 as follows:

¤x (𝑡) =
𝜕x (𝑡)
𝜕𝑡

= b𝑞 =


[
0 1

]
𝑞 = 0,

[
1 1

]
𝑞 = 1.

(3.29)

To estimate AoI using (2.17), it is necessary to find �̄��̄�0 using (2.16), in this regards first (2.12) has
been employed to find stationary probabilities and it can be shown that the stationary stationary
probability vector satisfies �̄�D = �̄�Q with

D = diag
[
𝜆𝑎 𝜇

]
, Q =

[
0 𝜆𝑎

𝜇 0

]
Applying (2.13), the stationary probabilities �̄� are given as

�̄� =
[
�̄�0 �̄�1

]
=

1
𝜆𝑎 + 𝜇

[
𝜇 𝜆𝑎

]
(3.30)

Using (2.16), the solution can be found for

v̄ =
[
v̄0 v̄1

]
=

[
�̄�01 �̄�00 �̄�11 �̄�10

]
. (3.31)

Hence, evaluating (2.13) at 𝑞 = 0 and 𝑞 = 1 and using Table 3.1, the following is obtained:

𝜆𝑎

[
�̄�01 �̄�00

]
=

[
0 �̄�0

]
+ 𝜇 (1 − 𝜀)

[
0 �̄�11

]
+ 𝜇𝜀

[
0 �̄�10

]
(3.32)

𝜇

[
�̄�11 �̄�10

]
=

[
�̄�1 �̄�1

]
+ 𝜆𝑎

[
0 �̄�00

]
(3.33)

By solving (3.32), (3.33) and (3.30) the values of the �̄��̄�0 are calculated. Finally, by substituting
the result in to (2.17), the AAoI at the D can be obtained as follows:

Δ𝐴𝐴𝑜𝐼𝐷 =
1

(1 − 𝜀) 𝜆𝑎
+

1
(1 − 𝜀) 𝜇 +

𝜆𝑎

𝜇 (𝜆𝑎 + 𝜇) . (3.34)

Approximated AAoI can be calculated applying semi-linearly approximated decoding error proba-
bility for (3.34).

3.3 Simulation Results

In this section, numerical results are presented to validate the theoretical derivations. Unless
otherwise specified, the simulation parameters are listed in the Table 3.2.
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Table 3.2: Simulation Parameters for UAV-Assisted Communication System [159].

Parameter Value

Distance between 𝑆 and 𝐷 (𝑑𝑆,𝐷) 500 m
Distance dividing factor (𝛽) 0.5
Carrier frequency ( 𝑓𝑐) 6 GHz
Speed of the light (m/s) 3 × 108ms−1

𝜂𝐿𝑜𝑆 (Suburban) 0.1 dB
𝜂𝑁𝐿𝑜𝑆 (Suburban) 21 dB
𝜂𝐿𝑜𝑆 (Urban) 1 dB
𝜂𝑁𝐿𝑜𝑆 (Urban) 20 dB
𝜂𝐿𝑜𝑆 (Dense urban) 1.6 dB
𝜂𝑁𝐿𝑜𝑆 (Dense Urban) 23 dB
𝜂𝐿𝑜𝑆 (High-rise urban) 2.3 dB
𝜂𝑁𝐿𝑜𝑆 (High-rise Urban) 34 dB
Transmission power at source (𝑃𝑆) 5 mW
Transmission power at UAV (𝑃𝑈𝐴𝑉 ) 5 mW
Symbol duration (𝑇𝑠) 17 µs
𝑛𝑆,𝑈𝐴𝑉 54 bits
𝑛𝑈𝐴𝑉,𝐷 54 bits
𝑛 108 bits
𝑘𝑏 32 bits
𝜆𝑎 529 update s−1

Noise power (𝜎2 ) -100 dBm

In Figure 3.4 plots approximated AAoI as a function of the UAV altitude. The approximated
AAoI is calculated using (3.34) with the approximation approach of (3.21).It can be observed from
Figure 3.4 that the optimal altitude under all environmental conditions is 500 m. For low altitude,
higher AAoI is observed due to the higher error probability caused by the weak LoS. When altitude
increases towards its optimal value, AAoI decreases rapidly due to the strong LoS. In this scenario,
getting strong LoS channels is more significant than the losses due to the increased length of the
communication link. However, beyond optimal altitude, the path loss dominates the other factors,
leading to a higher AAoI. In addition, within altitude between 200 m-750 m, approximated AAoI
is minimum for all the other environments except high-rise urban. In this scenario, AAoI goes to
its minimum value 4.59 ms since error probability is approximated as zero. However, compared to
the other environmental conditions, high-rise urban environments have low SNR due to the weak
LoS; hence, AAoI can not be approximated to its minimum. The suburban environment has the
lowest AAoI for all altitudes due to the strong channel condition.

Figure 3.5a and 3.5b compare the numerically simulated AAoI with the approximated AAoI for
the dense urban environment and the high-rise urban environment, respectively. This approximation
is tight for moderate values ofΨ and it is improved for small values ofΦ as in (3.21). Hence, it can be
observed that under dense urban conditions, the AAoI approximation is tight for moderate altitude
values. Under high-rise urban conditions, simulated AAoI deviates from the approximations. The
main reason for this trend is that under this condition, the Ψ values are not moderate due to the
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Figure 3.4: Approximated AAoI as a function of UAV Altitude

lower or higher SNR.

Figure 3.6 shows the AAoI versus the transmission power of the UAV and the source under the
different environmental conditions. It is assumed that UAV altitude is 500 m. It can be observed
that the transmission power significantly affects the AAoI of the proposed UAV communication
system. Regardless of the environmental condition, AAoI is continuously decreasing when the
transmission power increases. However, since the number of transmission errors in the wireless
network is minimal at that time, AAoI seems to saturate at 1.5 mW of transmission power; hence, the
system reaches its lowest AAoI 4.59 ms. However, under high-rise, urban environment conditions,
more than 1.5 mW transmission power is needed to achieve minimum AAoI compared with the
other environments. From Figure 3.6, it can be concluded that transmission power is a more
significant factor that changes the AAoI performance of a UAV-assisted wireless communication
system. Figure 3.7 illustrate the effect of the block-length on AAoI when the transmission power is
equal to 2 mW. In general, the block length is proportional to the transmission time and increasing
block length always increases the system delay of the wireless communication networks. From
this figure, it can be noted that there is an optimal value for the block length. It is observed that
for small values of the block length, the system has a higher AAoI. Note that small block length
values increase the number of transmission errors due to the unsuccessful decoding at the receiving
nodes. In this scenario, the effect of the decoding error probability on AAoI is more significant

36



3.3. SIMULATION RESULTS

Altitude of the UAV, H [m]
0 100 200 300 400 500 600 700 800 900 1000

A
A
oI

[s
]

×10
-3

4.5

5

5.5

6

6.5

7

Numerical - Dense Urban

Approximation-Dense Urban 

(a) Dense Urban Environment

Altitude of the UAV, H [m]
100 200 300 400 500 600 700 800 900 1000

A
A
oI

[s
]

×10
-3

5

6

7

8

9

10

Numerical-Highrise Urban

Approximation-Highrise Urban

(b) Highrise Urban Environment

Figure 3.5: AAoI as a function of UAV Altitude in different urban environments
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Figure 3.6: AAoI as a function of transmission power at UAV and Source

than the low transmission time. On the other hand, increasing the block length from a small value
to the optimal value decreases AAoI due to the small number of decoding errors. In this event,
the low error probability effect is more significant than increases in transmission time. However,
beyond the optimal value, the effect of the transmission time is more dominant than the decoding
error. Thus, from the figure, it can be observed that increasing block length beyond its optimal
value rapidly increases the AAoI of the system. The conclusion from Figure 3.7 is that maintaining
optimal block length is necessary to achieve better AAoI.

Figure 3.8 plots AAoI as a function of the update generation rate at the source. It is evident
that the AAoI of the proposed UAV-assisted communication system is monotonically decreasing
with the update generation rate. In this wireless system, no packets are kept in a queue waiting
for transmission. Thus, there is no queuing delay in the system and higher update generation rates
decrease AAoI. Figure 3.9 compares the AAoI of the UAV-assisted relay system with that of the
direct transmission system. For a fair comparison, it is assumed that the transmission power of
the direct transmission system at the 𝑆 is 10 mW which is equal to the total transmission power
of the UAV-assisted relay system. UAV altitude is 500 m. It is observed that by employing a
UAV-assisted communication system, the AAoI can be reduced. In addition, the performance gap
is more significant for long-distance transmission. Specifically, the key findings of this simulation
results can be highlighted as follows:
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Figure 3.7: AAoI as a function of Blocklength in the Highrise Urban Environment

• AAoI drops initially and then, subsequently, increases as the UAV altitude increases. When
UAV altitude is low, increasing UAV altitude enhances the probability of LoS transmission,
which improves the connection reliability. As UAV altitude is increased further, a larger path
loss is obtained, which dominates the system performance.

• The AAoI of the system decreases monotonically as the update generation rate increases, as
there is no queuing delay in the system.

• There is a sub-optimal value of block length that minimises the AAoI. This is mostly due to
the trade-off that short block length decreases latency while increasing error probability.

• It has been realised that using a UAV-assisted wireless communication system can reduce
the AAoI when compared to terrestrial transmission.
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Figure 3.8: AAoI as a function of updates generation rate in the Highrise Urban Environment

3.4 Conclusions

To determine the significance of a UAV-assisted relaying system in terms of information freshness,
the AAoI for an URLLC-enabled UAV-assisted communication system was estimated and closed-
form expressions for the AAoI were derived. Numerical results were then provided to determine the
optimal suitability between UAV-assisted relay and direct transmission systems for mission-critical
IoT applications. Furthermore, the study investigated AAoI as a function of block length, UAV
altitude, update generation rate, transmission power and distance. More importantly, the numerical
results demonstrate that UAV-assisted relayed transmission improves the freshness of information
compared to direct transmission.
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Chapter 4

AoI in SWIPT-Driven Wireless
Communications

4.1 Introduction

SWIPT-enabled wireless cooperative communication systems are an emerging technology for future
wireless communication applications. Furthermore, the IoT serves a diverse range of purposes, some
of which are mission-critical and require constantly evolving real-time data. Thus, the information
received at the destination must be updated in a timely manner to ensure its freshness. The AoI
has been introduced to measure the freshness of received information. This study estimates the
AoI of a SWIPT assisted decode and forward two-way relay assisted status update system in which
two sources attempt to exchange status updates as quickly as possible to the destination. The relay
system employs short packet communication to adhere to the latency and reliability requirements
of the wireless communication system. The study examines the AAoI at the destination in the
proposed relay network and derives approximations for the weighted sum AAoI under two different
types of transmission scheduling policies at the relay: TWW and WUC. Furthermore, the effects of
transmission power, packet size, the distance between relay and sources and block-length on the
weighted sum AAoI of the proposed SWIPT assisted short packet relay network are extensively
investigated. The performance differences of the considered transmission policies are compared
and insights are provided. Numerical simulations using the Monte Carlo (MC) method have been
employed to validate derived analytical expressions.

4.1.1 Motivations and Contributions

Motivated by the features of SWIPT, short packet communication and cooperative communications,
as well as the need for assessing the timeliness of information in modern mission-critical applications,
this work analyses the AoI in a SWIPT-enabled wireless cooperative short packet relay system,
utilising finite block length information theory and AoI metrics. In summary, this work makes the
following contributions:

• First, a theoretical model has been developed to measure the freshness of the information in
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a SWIPT-enabled short packet communication two-way cooperative relay scheme under the
two type transmission policies at the relay named TWW and WUC.

• Secondly, expressions were presented for the block error rate (BLER) under each transmission
policy separately, using different mathematical approximations. Based on the derived
expressions, the BLER performance of the considered system is compared. Several key
observations related to the impact of transmission power on the BLER are obtained.

• Thirdly, approximations for the AAoI of the proposed two-way relay scheme under the finite
block-length constraint are derived for both transmission policies. Additionally, the accuracy
of these approximations has been verified using MC method-based numerical simulations.

• Finally, this chapter analyses how the information freshness of the relay system varies when
the transmission scheduling policy at the relay is altered across different transmission power
levels. Additionally, this chapter examines the effects of several factors, including block
length and packet size, on the weighted sum AAoI. MC-based numerical simulations are
provided to verify the accuracy of the theoretical analysis.

4.1.2 Organization

The rest of the chapter is arranged as follows: Section 4.2 presents the system model and the
underlying assumptions, evaluating the reliability of the system and freshness of the information
at the destination under proposed transmission policies using finite block-length analysis and the
AoI analysis, respectively. Section 4.3 compares the proposed policies using extensive simulation
results. Section 4.4 concludes the chapter. Several proofs have been added to the appendix to
improve readability.

4.2 System Model

As depicted in Figure 4.1, this chapter considers a two-way cooperative status update system where
two source nodes, source 𝐴 (𝑆𝐴) and source 𝐵 (𝑆𝐴) exchange status updates with each other as
timely as possible with the help of a bidirectional IoT relay node 𝑅. The sources in this system
are regarded as energy providers and the relay is equipped with an EH device and is capable
of information transmission and harvesting energy simultaneously. The 𝑅 adopts the dynamic
power splitting technique [8]. In this chapter, two types of transmissions and EH policies at 𝑅 are
considered : TWW and WUC.

• TWW: As shown in Figure 4.1, a two-time slot transmission scheme is considered in which
𝑆𝑖 sends updates to the 𝑅 while harvesting energy during the first transmission time slot (𝑇1).
Then, the 𝑅 exchanges updates received from 𝑆𝑖 using harvested energy during the second
transmission time slot (𝑇2). The 𝑇1 and 𝑇2 are constant time slots and 𝑆𝑖 , 𝑖 ∈ (𝐴, 𝐵) transmits
status updates, which can be generated at the beginning of any time circle following the
generate-at-will updates generation model [165]. Under this policy, the relay uses energy
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Figure 4.1: (a) In the system model, sources 𝐴 𝑆𝐴 and 𝐵 𝑆𝐵 exchange status updates with each
other with the help of a single relay 𝑅; sources send updates to the 𝑅 during the first transmission
time slot 𝑇1 while the 𝑅 is harvesting energy and then the 𝑅 exchanges updates received from each
source using harvested energy during the second transmission time slot 𝑇2. (b) Timing diagram of
the proposed cooperative strategies.

harvested within the first transmission time slot for the transmission in the second transmission
time slot without waiting. Suppose the harvested energy is less than the minimum required
energy for the transmission. In that case, the relay does not transmit the received updates
and updates received from both sources are destroyed at the relay. Also, if the update
transmission is unsuccessful at the relay or destination nodes within the considered time
circle, it is destroyed to keep the information fresh [165].

• WUC : Under the WUC policy, 𝑆𝑖 , 𝑖 ∈ (𝐴, 𝐵) generates status updates at the beginning of
each transmission circle following the generate-at-will updates generation model and then
updates are transmitted to the 𝑅 while 𝑅 harvests energy from the sources. However, suppose
𝑅 is unable to harvest the required energy set by the system within the first time slot. In that
case, it waits for the transmission until it harvests the required energy for an update exchange
and after it harvests the required energy defined by the system, the 𝑅 exchanges the latest
updates in the second transmission slot (𝑇2). In this event, 𝑆𝑖 , 𝑖 ∈ (𝐴, 𝐵) sent an update at
each transmission slot until 𝑅 harvested the required power and the 𝑅 transmits the most
recent update received from the sources. Simply, relay will transmit the update received in
the final time slot of the waiting time (𝑇𝑤) to maintain the freshness of the information.

In addition, the following set of assumptions is taken into account throughout this chapter:

1. There is no direct link between the source and the destination (opposite source) node due to
intense shadowing or blockage. Therefore, the intermediate relay facilitates the transmission
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of messages from the source to the destination (opposite source). This system model considers
a single relay node for simplicity.

2. The relay node employs the DF technique as its relaying protocol.

3. The channel gains of each channel in this system are modeled using quasi-static block-
fading and non-selective frequency parameters. The channel is independent and identically
distributed from one block to the next. All wireless channels are modelled as Rayleigh fading
channels and stay constant during each transmission block.

4. The processing power required by the transmit/receive circuitry at the relay is insignificant
as compared to the power utilised for signal transmission from the relay to the destination
(opposite source)[10].

5. The up-link transmission between the source and the relay are performed in an orthogonal
channel.

To facilitate a clear exposition, this chapter concentrates on single-antenna transmission and
frequency-flat fading channels. It is worth noting, however, that an extension of the system model
to scenarios involving multiple antennas or frequency-selective fading is entirely feasible.

Throughout the chapter, 𝐻𝑖 𝑗 represents the channel coefficient of the channel between node 𝑖
and node 𝑗 , where 𝑖, 𝑗 ∈ {𝐴, 𝐵, 𝑅} and 𝑖 ̸= 𝑗 . The small-scale channel gain 𝑔𝑖 𝑗 is 𝑔ij =

��ℎij
��2, where

ℎij ∼ CN (0, 1) is the fading channel coefficient, where CN represents complex normal (Gaussian)
distribution. The PDF of the small-scale channel gain for the Rayleigh fading can be defined as
𝑓𝑔ij(𝑧) = 𝑒−𝑧 , 𝑧 ≥ 0. The large-scale channel gain 𝛼𝑖 𝑗 is given by [92],

−10 log10(𝛼ij) = 20 log10(𝑑ij) + 20 log10(
4𝜋 𝑓𝑐
𝑐

), (4.1)

where 𝑓𝑐 and 𝑑𝑖 𝑗 are the carrier frequency and distance between node 𝑖 and node 𝑗 , respectively. 𝑐
is the speed of light in space. Thus, the channel coefficient can be written as 𝐻𝑖 𝑗 = √

𝛼𝑖 𝑗𝑔𝑖 𝑗 and
channel gain 𝐺𝑖 𝑗 is written as 𝐺𝑖 𝑗 = 𝛼𝑖 𝑗𝑔𝑖 𝑗 .

4.2.1 Block error analysis under finite block-length

The AoI is usually recognised as a destination-centric statistic since it measures the time difference
between the present time and the generation time of the most recent update received by the
destination. It only examines packets that are successfully received and forwarded to the destination.
Furthermore, the AoI is greatly influenced by the transmission error rate and the update generation
rate at the source. Then, our first objective is to study BLER at each destination (opposite source)
in this system. The BLER at the destination under both transmission policies has been derived
using different mathematical approximation techniques in this section.
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4.2.1.1 Transmission Policy 01 : TWW

To calculate BLER at each node, it is necessary to derive the SNR at each node. The received SNR
at the relay from each source node 𝑆𝑖′ , 𝑖′ ∈ {𝐴, 𝐵}, 𝛾𝑖′

𝑅
is given by,

𝛾𝑖
′
𝑅 =

(1 − 𝜌)𝑃𝑖′𝐺𝑖′𝑅
𝜎2
𝑅

, (4.2)

where 𝜌 is the power splitting factor, noise power at the relay is denoted as 𝜎2
𝑅

and transmit power
at the 𝑆𝑖′ is given by 𝑃𝑖′ . However, the harvested amount of energy at 𝑅 depends on the EH policy.
Thus, the system model is analysed according to the considered EH policy at the 𝑅. Under the
TWW policy, the energy harvested by the relay from each node is given by,

𝐸 𝑖
′
𝑅 = 𝜌𝜂𝑃𝑖′𝐺𝑖′𝑅𝑇1, (4.3)

where 𝜂 is the EH efficiency and 𝑇1 is the transmission time of the first transmission slot and it can
be calculated as 𝑇1 = 𝑛𝑖′

𝑅
𝑇𝑠, where 𝑛𝑖′

𝑅
is the allocated block-length for the transmission between 𝑖′

and 𝑅 and 𝑇𝑠 is the symbol duration. Then, the total energy harvested by the relay within the first
transmission slot 𝐸𝑅 is given by

𝐸𝑅 =
∑︁

𝑖′={𝐴,𝐵}
𝐸 𝑖

′
𝑅 = 𝜌𝜂𝑇1 (𝑃𝐴𝐺𝐴𝑅 + 𝑃𝐵𝐺𝐵𝑅) . (4.4)

The available energy harvested by the relay for transmission 𝐸𝑇
𝑅

is given by

𝐸𝑇𝑅 =


𝐸𝑚𝑎𝑥 , 𝐸𝑅 ≥ 𝐸𝑚𝑎𝑥 ,

𝐸𝑅, 𝐸𝑚𝑎𝑥 > 𝐸𝑅 > 𝐸𝑚𝑖𝑛,

0, otherwise,

(4.5)

where 𝐸𝑚𝑎𝑥 is the maximum energy limit that the relay can harvest and 𝐸𝑚𝑖𝑛 is the minimum
energy required for transmission. 𝐸𝑚𝑖𝑛 can be calculated as 𝐸𝑚𝑖𝑛 = 𝑃𝑚𝑖𝑛𝑇2, where 𝑃𝑚𝑖𝑛 is the
minimum required power for the transmission while 𝑇2 is the time of the second transmission slot.
𝑇2 is calculated as

𝑇2 =
∑︁

𝑖={𝐴,𝐵}
𝑛𝑅𝑖 𝑇𝑠, (4.6)

where 𝑛𝑅
𝑖

is the allocated block-length for the transmission between 𝑅 and 𝑖. Then, the transmit

power of relay 𝑃𝑅 is calculated as 𝑃𝑅 = 𝐸𝑅
𝑇

𝑇2
. During the second time slot, the received SNR at each

𝑆𝑖 ∈ {𝐴, 𝐵}, 𝛾𝑖 is given by

𝛾𝑖 =
𝑃𝑅𝐺𝑅𝑖

𝜎2
𝑖

, (4.7)

where 𝜎2
𝑖

is noise power at the 𝑆𝑖 . Then, using (4.4) and (4.5) SNR at the destination is expressed
as

𝛾𝑖 =


𝐸𝑚𝑎𝑥𝛼𝑅𝑖𝑔𝑅𝑖

𝑇2𝜎
2
𝑖

, 𝐸𝑅 > 𝐸𝑚𝑎𝑥

𝐸𝑅𝛼𝑅𝑖𝑔𝑅𝑖

𝑇2𝜎
2
𝑖

, 𝐸𝑚𝑎𝑥 ≥ 𝐸𝑅 ≥ 𝐸𝑚𝑖𝑛

0, otherwise.

(4.8)
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An outage happens when the relay or opposite source are unable to decode the received message
successfully. Hence, the system overall decoding error probability 𝜀𝑖 at each source node 𝑖 can be
calculated as

𝜀𝑖 = 𝜀𝑖
′
𝑅 +

(
1 − 𝜀𝑖′𝑅

)
𝜀𝑅𝑖 , (4.9)

where 𝑖 ̸= 𝑖′, 𝑖, 𝑖′ ∈ {𝐴, 𝐵} and 𝜀𝑡
𝑗

is the decoding error probability at receiving node 𝑗 ∈ (𝑖, 𝑅) for
block received from node 𝑡 ∈ (𝑖′, 𝑅). Following PPV´s results on short packet communication [90]
and assuming that the receiver has the perfect CSI, the expectation of the block error probability at
the receiving node for a given block-length 𝑛𝑡

𝑗
can be written as

𝜀𝑡𝑗 = E

𝑄
©«
𝑛𝑡
𝑗
𝐶(𝛾𝑡

𝑗
) − 𝑘 𝑡

𝑗√︃
𝑛𝑡
𝑗
𝑉(𝛾𝑡

𝑗
)

ª®®¬
 , (4.10)

where E [·] is the expectation operator, 𝑄(·) is the Q-function; it can be defined as 𝑄(𝑥) =
1√
2𝜋

∫∞
𝑥
𝑒−

𝑡2
2 𝑑𝑡 and𝑉(𝛾𝑡

𝑗
) is the channel dispersion, which can be written𝑉(𝛾𝑡

𝑗
) = log2

2𝑒
2 (1− 1

(1+𝛾𝑡
𝑗
)2 ).

The variable 𝐶(𝛾𝑡
𝑗
) denotes the channel capacity of a complex AWGN channel and it is given by

𝐶(𝛾𝑡
𝑗
) = log2(1 + 𝛾𝑡

𝑗
). The number of bits per block is 𝑘 𝑡

𝑗
. Moreover, under the Rayleigh fading

channel conditions, 𝜀𝑡
𝑗

can be formulated as

𝜀𝑡𝑗 =
∫∞

0
𝑓𝛾𝑡
𝑗
(𝑧)𝑄

©«
𝑛𝑡
𝑗
𝐶(𝛾𝑡

𝑗
) − 𝑘 𝑡

𝑗√︃
𝑛𝑡
𝑗
𝑉(𝛾𝑡

𝑗
)

ª®®¬ 𝑑𝑧, (4.11)

where 𝑓𝛾𝑡
𝑗
(𝑧) denotes the PDF of the 𝜀𝑡

𝑗
. Due to the complexity of the Q-function, it is challeng-

ing to get a closed-form expression for the overall decoding error probability. Thus, using the
approximation technique given in [161] and [94], (4.11) can be approximated as

𝜀𝑡𝑗 ≈
∫∞

0
𝑓𝛾𝑡
𝑗
(𝑧)Θ𝑡𝑗(𝑧)𝑑𝑧, (4.12)

where Θ𝑡
𝑗
(𝑧) denotes the linear approximation of 𝑄

(
𝑛𝑡
𝑗
𝐶(𝛾𝑡

𝑗
)−𝑘𝑡

𝑗√︃
𝑛𝑡
𝑗
𝑉(𝛾𝑡

𝑗
)

)
that can be expressed as in [94]

Θ𝑡𝑗(𝑧) =


1, 𝛾𝑡

𝑗
≤ 𝜙𝑡

𝑗
,

1
2 − 𝛽𝑡

𝑗

√︃
𝑛𝑡
𝑗
(𝛾𝑡
𝑗
− 𝜓𝑡

𝑗
), 𝜙𝑡

𝑗
< 𝛾𝑡

𝑗
< 𝛿𝑡

𝑗
,

0, 𝛾𝑡
𝑗
≥ 𝛿𝑡

𝑗
,

(4.13)

where 𝜏𝑡
𝑗

= 2
2𝑘𝑡
𝑗

𝑛𝑡
𝑗 , 𝛽𝑡

𝑗
= 1

2𝜋
√︃
𝜏𝑡
𝑗
−1
, 𝜓 𝑗 = 2

𝑘𝑡
𝑗

𝑛𝑡
𝑗 − 1, 𝜙𝑡

𝑗
= 𝜓𝑡

𝑗
− 1

2𝛽𝑡
𝑗

√︃
𝑛𝑡
𝑗

and 𝛿𝑡
𝑗

= 𝜓𝑡
𝑗

+ 1
2.𝛽𝑡

𝑗

√︃
𝑛𝑡
𝑗

. By using

above linear approximation, 𝜀𝑡
𝑗

is expressed as

𝜀𝑡𝑗 ≈ 𝛽𝑡𝑗

√︃
𝑛𝑡
𝑗

∫ 𝛿𝑡
𝑗

𝜙𝑡
𝑗

𝐹𝛾𝑡
𝑗
(𝑧) 𝑑𝑧, (4.14)
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where 𝐹𝛾𝑡
𝑗
(𝑧) denotes CDF of the 𝜀𝑡

𝑗
. To calculate error probability at each source 𝑖 using (4.9), it

is necessary to calculate 𝜀𝑖′
𝑅

and 𝜀𝑅
𝑖

. Using (4.13) and (4.14), the BLER at 𝑅 and each source can
be calculated as follows:

𝜀𝑖
′
𝑅 ≈ 𝛽𝑖

′
𝑅

√︃
𝑛𝑖

′
𝑅

∫ 𝛿𝑖
′
𝑅

𝜙𝑖
′
𝑅

𝐹
𝛾𝑖

′
𝑅
(𝑧) 𝑑𝑧, (4.15)

𝜀𝑅𝑖 ≈ 𝛽𝑅𝑖

√︃
𝑛𝑅
𝑖

∫ 𝛿𝑅
𝑖

𝜙𝑅
𝑖

𝐹𝛾𝑅
𝑖
(𝑧) 𝑑𝑧, (4.16)

Lemma 1. An approximation expression for the block error probability at the relay can be derived
as

𝜀𝑖
′
𝑅 ≈ 1 −

©«
(1 − 𝜌)𝑃𝑖′𝛼𝑖′𝑅𝛽𝑖

′
𝑅

√︃
𝑛𝑖

′
𝑅

𝜎2
𝑅

ª®®¬
(
𝑒
−

𝜙𝑖
′
𝑅
𝜎2
𝑅

(1−𝜌)𝑃𝑖′ 𝛼𝑖′𝑅 − 𝑒−
𝛿𝑖

′
𝑅
𝜎2
𝑅

(1−𝜌)𝑃𝑖′ 𝛼𝑖′𝑅

)
. (4.17)

Proof. : See Appendix A.

Lemma 2. Block error probability at the opposite receiving node can be derived as follows:

𝜀𝑅𝑖 ≈ 𝛽𝑅𝑖

√︃
𝑛𝑅
𝑖

( (
𝛿𝑅
𝑖

+ 𝜙𝑅
𝑖

2

)
𝑉 𝑓∑︁
𝑣=1

𝜋

𝑉 𝑓

√︃
1 − 𝜙2

𝑣𝐹𝛾𝑅
𝑖
(𝑞) + 𝑅𝑉

)
, (4.18)

where 𝜙𝑣 = cos
(

2𝑣−1
2𝑣 𝜋

)
, 𝑞 =

(
𝛿𝑅
𝑖
−𝜙𝑅

𝑖

2

)
𝜙𝑣 +

(
𝛿𝑅
𝑖

+𝜙𝑅
𝑖

2

)
, 𝑉 𝑓 is the complexity-accuracy trade-off

factor, while 𝑅𝑉 denotes the error term, which is ignored at substantially larger values of 𝑉 𝑓 .

Proof. To calculate error probability at 𝑆𝑖 , it is necessary to derive the CDF of SNR at the destination
node. Using (4.5), 𝐹𝛾𝑡

𝑗
(𝑧) can be derived as

𝐹𝛾𝑅
𝑖
(𝑧) =P𝑟

(
𝛾𝑅𝑖 < 𝑧

)
= 1 − P𝑟

{
𝐸𝑅 ≥ 𝐸𝑚𝑖𝑛 ∩ 𝛾𝑅𝑖 > 𝑧

}
𝐹𝛾𝑅

𝑖
(𝑧) =1 − P𝑟

{
𝐸𝑚𝑖𝑛 ≤ 𝐸𝑅 ≤ 𝐸𝑚𝑎𝑥 ∩ 𝛾𝑅𝑖 > 𝑧

}︸                                         ︷︷                                         ︸
𝐿1

−P𝑟
{
𝐸𝑅 ≥ 𝐸𝑚𝑎𝑥 ∩ 𝛾𝑅𝑖 > 𝑧

}︸                             ︷︷                             ︸
𝐿2

. (4.19)

Then, substituting 𝐸𝑅 = 𝜌𝜂𝑇1 (𝑃𝐴𝛼𝐴𝑅𝑔𝐴𝑅 + 𝑃𝐵𝛼𝐵𝑅𝑔𝐵𝑅), 𝐿1 in (4.19) is evaluated as follows:

𝐿1 =P𝑟 {Ω1 < 𝐼 < Ω2 ∩ 𝐼𝑔𝑅𝑖 > Ω3} (4.20)

or

𝐿1 =


0, 𝑔𝑅𝑖 <

Ω3
Ω2

P𝑟
{
Ω3
𝑔𝑅𝑖

< 𝐼 ⩽ Ω2

}
,

Ω3
Ω2
< 𝑔𝑅𝑖 <

Ω3
Ω1

P𝑟 {Ω1 < 𝐼 ⩽ Ω2} , 𝑔𝑅𝑖 >
Ω3
Ω1

(4.21)

where Ω1 = 𝐸𝑚𝑖𝑛
𝜌𝜂𝑇1

, Ω2 = 𝐸𝑚𝑎𝑥
𝜌𝜂𝑇1

, Ω3 = 𝑧𝜎2
𝑖
𝑇2

𝜌𝜂𝑇1𝛼𝑅𝑖
and 𝐼 = ∑

𝑖={𝐴,𝐵} 𝑃𝑖𝛼𝑖𝑅𝑔𝑖𝑅. To calculate 𝐿1 it
is necessary to get PDF and CDF of 𝐼 and 𝑔𝑅𝑖. Then, to calculate PDF of 𝐼, it is considered as
summation of two independent random variable as 𝐼 = 𝜇1 + 𝜇2, where 𝜇1 ∼ exp( 1

𝑃𝐴𝛼𝐴𝑅
) and
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𝜇2 ∼ exp( 1
𝑃𝐵𝛼𝐵𝑅

). Then, using the concepts of convolution of random variables, PDF and CDF of
𝐼 can be calculated as follows:

𝑓𝐼 (𝑧) =
∫∞

−∞
𝑓𝜇1(𝑥) 𝑓𝜇2(𝑧 − 𝑥)𝑑𝑥

=
∫ 𝑧

0

1
𝑃𝐴𝛼𝐴𝑅

𝑒
− 1
𝑃𝐴𝛼𝐴𝑅

𝑥 1
𝑃𝐵𝛼𝐵𝑅

𝑒
− 1
𝑃𝐵𝛼𝐵𝑅

(𝑧−𝑥)
𝑑𝑥,

=
1

𝑃𝐴𝛼𝐴𝑅𝑃𝐵𝛼𝐵𝑅
𝑒
− 1
𝑃𝐵𝛼𝐵𝑅

𝑧

∫ 𝑧
0
𝑒

( 1
𝑃𝐵𝛼𝐵𝑅

− 1
𝑃𝐴𝛼𝐴𝑅

)𝑥
𝑑𝑥,

𝑓𝐼 (𝑧) =


1
𝑃𝐴𝛼𝐴𝑅−𝑃𝐵𝛼𝐵𝑅 (𝑒−

1
𝑃𝐴𝛼𝐴𝑅

𝑧 − 𝑒−
1

𝑃𝐵𝛼𝐵𝑅
𝑧), if 1

𝑃𝐴𝛼𝐴𝑅
̸= 1
𝑃𝐵𝛼𝐵𝑅

,

1
(𝑃𝛼)2 𝑧𝑒

− 1
𝑃𝛼
𝑧 , if 1

𝑃𝐴𝛼𝐴𝑅
= 1
𝑃𝐵𝛼𝐵𝑅

= 1
𝑃𝛼
,

(4.22)

where 𝑓 (·) denotes PDF function of a random variable. Then, CDF of 𝐼 can be calculated as

𝐹𝐼 (𝑧) = 𝑃(𝑍 ≤ 𝑧) =
∫ 𝑧

0
𝑓 (𝑡)𝑑𝑡

𝐹𝐼 (𝑧) =


1 + 𝑃𝐵𝛼𝐵𝑅
𝑃𝐴𝛼𝐴𝑅−𝑃𝐵𝛼𝐵𝑅 𝑒

− 𝑧
𝑃𝐵𝛼𝐵𝑅 − 𝑃𝐴𝛼𝐴𝑅

𝑃𝐴𝛼𝐴𝑅−𝑃𝐵𝛼𝐵𝑅 𝑒
− 𝑧
𝑃𝐴𝛼𝐴𝑅 , if 𝑃𝐴𝛼𝐴𝑅 ̸= 𝑃𝐵𝛼𝐵𝑅,

1 − 𝑒− 1
𝑃𝛼
𝑧
(
1 + 1

𝑃𝛼
𝑧

)
, if 1

𝑃𝐴𝛼𝐴𝑅
= 1
𝑃𝐵𝛼𝐵𝑅

= 1
𝑃𝛼
.

(4.23)

Further, approximations for 𝐿1 are derived as follows:

𝐿1 =
∫ Ω3

Ω1

Ω3
Ω2

(
𝑓𝑔𝑅𝑖 (𝑥)

∫Ω2

Ω3
𝑥

𝑓𝐼 (𝑦) 𝑑𝑦
)
𝑑𝑥 +

∫Ω2

Ω1

𝑓𝐼 (𝑥) 𝑑𝑥
∫∞

Ω3
Ω1

𝑓𝑔𝑅𝑖 (𝑥) 𝑑𝑥,

𝐿1 = 𝐿3 + (𝐹𝐼 (Ω2) − 𝐹𝐼 (Ω1))
(
1 − 𝐹𝑔𝑅𝑖

(
Ω3

Ω1

))
,

(4.24)

where 𝐹(·) denotes CDF function of a random variable and

𝐿3 =
∫ Ω3

Ω1

Ω3
Ω2

(
𝑓𝑔𝑅𝑖 (𝑥)

∫Ω2

Ω3
𝑥

𝑓𝐼 (𝑦) 𝑑𝑦
)
𝑑𝑥

=
∫ Ω3

Ω1

Ω3
Ω2

𝑓𝑔𝑅𝑖 (𝑥)
[
𝐹𝐼 (Ω2) − 𝐹𝐼

(
Ω3

𝑥

)]
𝑑𝑥,

𝐿3 =𝐹𝐼 (Ω2)
[
𝐹𝑔𝑅𝑖

(
Ω3

Ω1

)
− 𝐹𝑔𝑅𝑖

(
Ω3

Ω2

)]
− 𝐿4,

(4.25)

where 𝐿4 can be defined as

𝐿4 =
∫ Ω3

Ω1

Ω3
Ω2

𝑓𝑔𝑅𝑖 (𝑥) 𝐹𝐼
(
Ω3

𝑥

)
𝑑𝑥. (4.26)

The Gaussian-Chebyshev-quadrature (GCQ) method [166, 167] is used to obtain a closed-form
expression for 𝐿4 since it converges much faster than other approximation methods [168]. Then,
(4.26) can be approximated as follows:

𝐿4 ≈
Ω3
Ω1

+ Ω3
Ω2

2

𝑀∑︁
𝑚=1

𝜋

𝑀

√︃
1 − 𝜙2

𝑚 𝑓𝑔𝑅𝑖 (𝑧1) 𝐹𝐼
(
Ω3

𝑧1

)
+ 𝑅𝑀 , (4.27)
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where 𝜙𝑚 = cos
(

2𝑚−1
2𝑀 𝜋

)
, 𝑧1 =

Ω3
Ω1

− Ω3
Ω2

2 𝜙𝑚 +
Ω3
Ω1

+Ω3
Ω2

2 , 𝑀 is the complexity-accuracy trade-off factor
and 𝑅𝑀 is the error term that can be ignored at sufficiently high 𝑀 values. Finally, the closed-form
expression for 𝐿1 can be approximated as shown in (4.29). Similarly, 𝐿2 is calculated as

𝐿2 = P𝑟 {𝐼 > Ω2 ∩ 𝑔𝑅𝑖 > Ω4} ,

= (1 − 𝐹𝐼 (Ω2))
(
1 − 𝐹𝑔𝑅𝑖 (Ω4)

)
,

(4.28)

whereΩ4 = 𝑧𝜎2
𝑖
𝑇2

𝐸𝑚𝑎𝑥𝛼𝑅𝑖
. Then, CDF of SNR at each destination (𝐹𝛾𝑡

𝑗
(𝑧)) can be obtained by substituting

(4.29) and (4.28) in (4.19) as in (4.30). The result can be proved by substituting (4.30) to (4.14)
and then applying the GCQ method for the integration of the CDF function.

Finally, by substituting (4.17) and (4.18) into (4.9) the overall transmission error probability
can be calculated.

4.2.1.2 Transmission Policy 02 : WUC

Under this policy, the relay waits to transmit updates received from the sources until it harvests
the required amount of energy 𝐸 ′

ℎ𝑎𝑟𝑣
that is defined by the system. The 𝐸 ′

ℎ𝑎𝑟𝑣
is calculated as

𝐸ℎ𝑎𝑟𝑣 = 𝑃𝑟𝑒𝑞𝑇2, where 𝑃𝑟𝑒𝑞 is the required power at 𝑅 for the transmission. In addition, it also
assumes that the maximum energy limit that the relay can harvest under this policy is the same as
the required energy. As a result, under this policy, transmission power at the relay is fixed to the
𝑃𝑟𝑒𝑞 .

Lemma 3. An approximation for the overall transmission error probability at each source under
the WUC policy can be obtained as

𝜀𝑖 ≈ 1 −
©«
𝛽𝑖

′
𝑅
𝛽𝑅
𝑖

√︃
𝑛𝑖

′
𝑅
𝑛𝑅
𝑖

((1 − 𝜌)𝑃𝑖′𝑃𝑟𝑒𝑞)𝛼𝑖′𝑅𝛼𝑅𝑖

𝜎2
𝑅
𝜎2
𝑖

ª®®¬(
𝑒
−

𝜙𝑖
′
𝑅
𝜎2
𝑅

𝛼𝑖′𝑅 (1−𝜌)𝑃𝑖′ − 𝑒−
𝛿𝑖

′
𝑅
𝜎2
𝑅

𝛼𝑖𝑅 (1−𝜌)𝑃𝑖′

) (
𝑒
−

𝜙𝑅
𝑖
𝜎2
𝑖

𝛼𝑅𝑖𝑃𝑟𝑒𝑞 − 𝑒−
𝛿𝑅
𝑖
𝜎2
𝑖

𝛼𝑅𝑖𝑃𝑟𝑒𝑞

)
. (4.31)

𝐿1 ≈ 𝐹𝐼 (Ω2)
[
𝐹𝑔𝑅𝑖

(
Ω3

Ω1

)
− 𝐹𝑔𝑅𝑖

(
Ω3

Ω2

)]
−

Ω3
Ω1

+ Ω3
Ω2

2

𝑀∑︁
𝑚=1

√︃
1 − 𝜙2

𝑚 𝑓𝑔𝑅𝑖 (𝑧1) 𝐹𝐼
(
Ω3

𝑧1

)
+ 𝑅𝑀

+ (𝐹𝐼 (Ω2) − 𝐹𝐼 (Ω1))
(
1 − 𝐹𝑔𝑅𝑖

(
Ω3

Ω1

))
. (4.29)

𝐹𝛾𝑅
𝑖
(𝑧) ≈ 1 − 𝐹𝐼 (Ω2)

[
𝐹𝑔𝑅𝑖

(
Ω3

Ω1

)
− 𝐹𝑔𝑅𝑖

(
Ω3

Ω2

)]
−

Ω3
Ω1

+ Ω3
Ω2

2

𝑀∑︁
𝑚=1

√︃
1 − 𝜙2

𝑚 𝑓𝑔𝑅𝑖 (𝑧1) 𝐹𝐼
(
Ω3

𝑧1

)
+ 𝑅𝑀 + (𝐹𝐼 (Ω2) − 𝐹𝐼 (Ω1))

(
1 − 𝐹𝑔𝑅𝑖

(
Ω3

Ω1

))
− (1 − 𝐹𝐼 (Ω2))

(
1 − 𝐹𝑔𝑅𝑖 (Ω4)

)
. (4.30)
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Proof. : See Appendix B.

4.2.2 AoI Analysis

4.2.2.1 Transmission Policy 01 : TWW

This section calculates the AAoI of the two-way relay system. The 𝑆𝐴 and 𝑆𝐵 generate new status
updates every transmission circle to keep the information at the corresponding destinations as fresh
as possible. Then, generated updates are transmitted to its opposite source using relay system. If
the generation time of the freshest update received at opposite source time stamp 𝑡 is 𝑔(𝑡), then AoI
can be defined as a random process as

Δ (𝑡) = 𝑡 − 𝑔(𝑡). (4.32)

As illustrated in Figure 4.2, it is assumed that at 𝑡 = 0 the measurements of the AoI start and the

∆ 𝑡

∆0

𝑔1 𝑔2 𝑔3 𝑔4 𝑔𝑛−2 𝑔𝑛−1 𝑔𝑛𝑔5 𝑔6 𝑡
𝑋1𝑇 𝑋2 𝑋𝑛

0

𝑇

Figure 4.2: Evolution of AoI Δ(𝑡) at at opposite source (destination) with the time under the TWW
policy: Each source generate updates at time stamps g1, g2, ..., gn−1 and the opposite source receive
these updates at time stamps g2, g3, ..., gn.

AoI at the opposite source (destination) is set to Δ(0) =Δ0. Each source generates updates at time
stamps g1, g2, ..., gn−1 and the opposite source receive these updates at time stamps g2, g3, ..., gn.
As illustrated in Figure 4.2, data update 𝑖 is transmitted from the source at time stamp 𝑡 = 𝑔𝑖 and
it is successfully delivered to its opposite source at time stamp 𝑔𝑖+1 = 𝑔𝑖 + 𝑇 where 𝑇 is total
time allocated for a transmission circle and 𝑇 = 𝑇1 + 𝑇2. Therefore, if update packet delivered
successfully, at the time 𝑔𝑖+1, the AoI at the opposite source can be calculated as

Δ(𝑔𝑖+1) = 𝑇. (4.33)
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4.2. SYSTEM MODEL

The AoI increases linearly until the next update is successfully delivered to the opposite source. As
an example, since one packet fails to be decoded at time 𝑔3, Δ(𝑡) continues to increase linearly. Here,
𝑋𝑖 is the inter-departure time between two consecutive successfully received status updates at 𝑆𝑖 and
it is a geometric random variable with mean 𝐸[𝑋𝑖] = 𝑇

1−𝜀𝑖 and second moment 𝐸
[
𝑋2
𝑖

]
= 𝑇2 (1+𝜀𝑖 )

(1−𝜀𝑖 )2 .
It assumes that the end-to-end delay of each successfully received update is always a constant given
by 𝐸[𝑌𝑖] = 𝑇1 + 𝑇2 = 𝑇 . Then, applying graphical methods to saw-tooth age waveform in Figure
4.2 and using (2.4) , AAoI at each 𝑆𝑖 , 𝑖 ∈ (𝐴, 𝐵), Δ𝐴𝐴𝑜𝐼

𝑖
is computed as follows:

Δ𝐴𝐴𝑂𝐼𝑖 =
𝐸[𝑋2

𝑖
]

2𝐸[𝑋𝑖]
+ 𝑇, (4.34)

Lemma 4. For the two way relay network, the expression of the AAoI at each source Δ𝐴𝐴𝑜𝐼
𝑖

can be
obtained as follows:

Δ𝐴𝐴𝑂𝐼𝑖 =
𝑇

2
+

𝑇

1 − 𝜀𝑖
(4.35)

Proof. The result can be provedby substituting𝐸[𝑋𝑖] = 𝑇
1−𝜀𝑖 and𝐸

[
𝑋2
𝑖

]
= 𝑇2 (1+𝜀𝑖 )

(1−𝜀𝑖 )2 into (4.34).

The expected weighted sum AAoI of the two-way relay system Δ𝐴𝐴𝑜𝐼
𝑆𝑢𝑚

can be calculated as
follows,

Δ𝐴𝐴𝑜𝐼𝑆𝑢𝑚 =
∑︁

𝑖={𝐴,𝐵}
𝜔𝑖Δ

𝐴𝐴𝑂𝐼
𝑖 (4.36)

where 𝜔𝑖 is the weighting coefficient at 𝑆𝑖 .

4.2.2.2 Transmission Policy 02 : WUC

Under this policy, the delay induced by the energy collection time to harvest the required energy
has a significant impact on the AoI. This time period is determined by two factors: the amount
of energy necessary for the transmission at the relay and the randomness of harvested energy in
each time slot. As a result, the important issue is how long it takes to collect the amount of energy
required for the transmission. Under this condition, the end-to-end delay time is not as constant as
it was previously and it can be defined as the sum of the waiting and receiving time at the relay 𝑇𝑤
and the transmission time between 𝑅 and the opposite source 𝑇2. The number of time slots in 𝑇𝑤 is
defined as 𝑚𝑤 (one time slot is equal to 𝑇1 amount of time). The probability mass function (PMF)
of the 𝑚𝑤 defined as 𝑃𝑤(𝑚) gives the probability that 𝑚𝑤 is exactly equal to 𝑚 number of time
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slots. Then, 𝑃𝑤(𝑚) obtained as follows:

𝑃𝑤(𝑚) = P𝑟

{(
𝑚−1∑︁
𝑘=1

𝐸 𝑘𝑅 < 𝐸ℎ𝑎𝑟𝑣

)
∩

(
𝑚∑︁
𝑘=1

𝐸 𝑘𝑅 ≥ 𝐸ℎ𝑎𝑟𝑣

)}
,

= P𝑟

{(
𝑚−1∑︁
𝑘=1

∑︁
𝑖∈{𝐴,𝐵}

𝜌𝜂𝑃𝑖𝐺
𝑘
𝑖𝑅𝑇1 < 𝐸ℎ𝑎𝑟𝑣

)
∩

(
𝑚∑︁
𝑘=1

∑︁
𝑖∈{𝐴,𝐵}

𝜌𝜂𝑃𝑖𝐺
𝑘
𝑖𝑅𝑇1 ≥ 𝐸ℎ𝑎𝑟𝑣

)}
,

= P𝑟

{(
𝑚−1∑︁
𝑘=1

∑︁
𝑖∈{𝐴,𝐵}

𝑃𝑖𝐺
𝑘
𝑖𝑅 < 𝐸

′
ℎ𝑎𝑟𝑣

)
∩

(
𝑚∑︁
𝑘=1

∑︁
𝑖∈{𝐴,𝐵}

𝑃𝑖𝐺
𝑘
𝑖𝑅 ≥ 𝐸 ′

ℎ𝑎𝑟𝑣

)}
,

= P𝑟

{(
𝑚−1∑︁
𝑘=1

∑︁
𝑖∈{𝐴,𝐵}

𝑃𝑖𝛼𝑖𝑅𝑔
𝑘
𝑖𝑅 < 𝐸

′
ℎ𝑎𝑟𝑣

)
∩

(
𝑚∑︁
𝑘=1

∑︁
𝑖∈{𝐴,𝐵}

𝑃𝑖𝛼𝑖𝑅𝑔
𝑘
𝑖𝑅 ≥ 𝐸 ′

ℎ𝑎𝑟𝑣

)}
,

= P𝑟
{
(𝑍 < 𝐸 ′

ℎ𝑎𝑟𝑣) ∩ (𝑍 +𝑉𝑐 ≥ 𝐸 ′
ℎ𝑎𝑟𝑣)

}
,

=
∫𝐸′

ℎ𝑎𝑟𝑣

𝑧=0

∫∞

𝑣𝑐=𝐸′
ℎ𝑎𝑟𝑣

−𝑧
𝑓𝑍 (𝑧) 𝑓𝑉𝑐 (𝑣𝑐) 𝑑𝑣 𝑑𝑧,

𝑃𝑤(𝑚) =
∫𝐸′

ℎ𝑎𝑟𝑣

𝑧=0
𝑓𝑍 (𝑧)[1 − 𝐹𝑉𝑐 (𝐸 ′

ℎ𝑎𝑟𝑣 − 𝑧)] 𝑑𝑧,

(4.37)

where 𝐸 ′
ℎ𝑎𝑟𝑣

= 𝐸ℎ𝑎𝑟𝑣
𝜌𝜂𝑇1

, 𝑍 and 𝑉𝑐 are random variables. The distribution of the 𝑍 is the same as the
mixture of two mutually independent Erlang distributions. It is known as hyper-Erlang distribution
[169, 170]. Therefore, the PDF of 𝑍 is given by

𝑓𝑍 (𝑧) =
(−1)𝑚−1 𝜉𝑚−1

𝐴
𝜉𝑚−1
𝐵

(𝜉𝐵 − 𝜉𝐴)2(𝑚−1)

[
𝑒−𝜉𝐴𝑧

𝑚−1∑︁
𝑘=1

(
2𝑚 − 𝑘 − 3
𝑚 − 2

)
(𝜉𝐴 − 𝜉𝐵)𝑘 𝑧𝑘−1

(𝑘 − 1) !
+ 𝑒−𝜉𝐵𝑧

𝑚−1∑︁
𝑘=1

(
2𝑚 − 𝑘 − 3
𝑚 − 2

)
(𝜉𝐵 − 𝜉𝐴)𝑘 𝑧𝑘−1

(𝑘 − 1) !

]
, (4.38)

where 𝜉𝐴 = 1
𝑃𝐴𝛼𝐴𝑅

, 𝜉𝐵 = 1
𝑃𝐵𝛼𝐵𝑅

and 𝜉𝐴 ̸= 𝜉𝐵. CDF of 𝑉𝑐 is given by

𝐹𝑉𝑐 (𝑡) = P(𝑉𝑐 ≤ 𝑡) = 1 +
𝜉𝐴

𝜉𝐵 − 𝜉𝐴
𝑒−𝜉𝐵𝑡 − 𝜉𝐵

𝜉𝐵 − 𝜉𝐴
𝑒−𝜉𝐴𝑡 . (4.39)

When 𝜉𝐴 ̸= 𝜉𝐵, it is challenging to find closed-form expression for 𝑃𝑤(𝑚). However, when
𝜉𝐴 = 𝜉𝐵 = 𝜉, the following is obtained:

𝑓𝑍 (𝑧) =
𝜉2𝑚−2𝑒−𝜉 𝑧𝑧2𝑚−3

(2𝑚 − 3) !
∼ Erlang(2𝑚 − 2, 𝜉), (4.40)

𝐹𝑉𝑐 (𝑡) = P(𝑉𝑐 ≤ 𝑡) = 1 − 𝑒−𝜉 𝑡 [1 + 𝜉𝑡] , (4.41)

𝑃𝑤 (𝑚) =
𝑒−𝜉𝐸

′
ℎ𝑎𝑟𝑣

(
𝜉𝐸 ′

ℎ𝑎𝑟𝑣

)2𝑚−2 [
2𝑚 − 1 + 𝜉𝐸 ′

ℎ𝑎𝑟𝑣

]
(2𝑚 − 1) !

. (4.42)

To compare the two transmission policies, it is considered that 𝜉𝐴 = 𝜉𝐵 = 𝜉
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Lemma 5. The first and second moments of the number of slots in the sum of the waiting and
receiving time at the relay are computed as follows,

𝐸 [𝑚𝑤] = 1 +
𝜉𝐸 ′

ℎ𝑎𝑟𝑣

2
, (4.43)

𝐸
[
𝑚2
𝑤

]
= 1 +

(
𝜉𝐸 ′

ℎ𝑎𝑟𝑣

)2

4
+

5𝜉𝐸 ′
ℎ𝑎𝑟𝑣

4
, (4.44)

Proof. : See Appendix C.

Then, the first and second moments of waiting time are calculated as follows,

𝐸 [𝑇𝑤] =
(
1 +

𝜉𝐸 ′
ℎ𝑎𝑟𝑣

2

)
𝑇1, (4.45)

𝐸
[
𝑇2
𝑤

]
=

(
1 +

(
𝜉𝐸 ′

ℎ𝑎𝑟𝑣

)2

4
+

5𝜉𝐸 ′
ℎ𝑎𝑟𝑣

4

)
𝑇2

1 . (4.46)

Lemma 6. The AAoI at each source in a decode and forward two-way relay network under the
WUC policy can be derived as

Δ𝐴𝐴𝑂𝐼𝑖 =
(1 + 𝜀𝑖)

(
𝑇2

2 + 2𝑇2𝐸 [𝑇𝑤] + 𝐸
[
𝑇2
𝑤

] )
2 (1 − 𝜀𝑖) (𝐸 [𝑇𝑤] + 2𝑇2)

+ 𝑇2 + 𝐸 [𝑇𝑤] . (4.47)

Proof. To calculate AAoI at each source, it is necessary to calculate the overall transmission
error probability 𝜀𝑖 at each source. It is assumed that after one successful update received at the
opposite source, 𝑛 𝑓 number of failures occur until the next successful update received, where 𝑛 𝑓 is
geometrically distributed with parameter 1− 𝜀𝑖 . The time span between two consecutive successful
update receptions is 𝑋 = (𝑛 𝑓 + 1)𝑌 , where 𝑌 denotes the time incurred to traverse through the
network and it can be defined as 𝑌 = 𝑇𝑤 + 𝑇2. Thus, 𝑋 is distributed as

𝑋 ∼
∞∑︁
𝑛 𝑓 =0

(𝜀𝑖)𝑛 𝑓 (1 − 𝜀𝑖) 𝛿
(
𝑋 −

(
𝑛 𝑓 + 1

)
𝑌
)
, (4.48)

where 𝛿(𝑋) refers to the dirac impulse [171]. The AAoI stated in (2.4) depends on 𝑌 and first and
second moments of the 𝑋 . Thus, 𝐸[𝑋] can be derived as

𝐸 [𝑋] =
∞∑︁
𝑛 𝑓 =0

(𝜀𝑖)𝑛 𝑓 (1 − 𝜀𝑖)
(
𝑛 𝑓 + 1

)
𝐸 [𝑌 ] ,

=
𝐸 [𝑌 ]
1 − 𝜀𝑖

=
𝐸 [𝑇𝑤] + 𝑇2

1 − 𝜀𝑖
,

(4.49)

and the second-order-moment 𝐸
[
𝑋2] can be calculated as

𝐸
[
𝑋2] =

∞∑︁
𝑛=0

𝐸
[
((𝑛 + 1)𝑌 )2 (𝜀𝑖)𝑛 (1 − 𝜀𝑖) (𝑛 + 1)

]
,

= 𝐸
[
𝑌2] 1 + 𝜀𝑖

(1 − 𝜀𝑖)2 ,

𝐸
[
𝑋2] =

1 + 𝜀𝑖
(1 − 𝜀𝑖)2

[
𝑇2

2 + 2𝑇2𝐸 [𝑇𝑤] + 𝐸
[
𝑇2
𝑤

] ]
.

(4.50)
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Then, using (2.4), Δ𝐴𝐴𝑜𝐼
𝑖

under WUC policy is formulated as follows:

Δ𝐴𝐴𝑂𝐼𝑖 =
𝐸

[
𝑋2]

2𝐸 [𝑋] + 𝑇2 +
𝐸[𝑇𝑤𝑋]
𝐸 [𝑋] , (4.51)

and assuming 𝑇𝑤 and 𝑋 are independent and identically distributed random variables, AAoI Δ𝐴𝐴𝑜𝐼
𝑖

is given by (4.51) can be re-formulated as

Δ𝐴𝐴𝑂𝐼𝑖 =
𝐸

[
𝑋2]

2𝐸 [𝑋] + 𝑇2 + 𝐸 [𝑇𝑤] . (4.52)

Then, the result can be proved by substituting (4.49) and (4.50) into (4.52).

The expected weighted sum AAoI of the two-way relay system under WUC policy can be
calculated using (4.36).

4.3 Simulation results and discussions

This section presents the analytical and simulation results. Unless otherwise mentioned, the
simulation parameters are listed in Table 4.1.

Table 4.1: Simulation Parameters for SWIPT-Enabled Two-Way Relay System with Short Packet
Communication [172, 173]

Parameter Value
Distance between 𝑆𝐴 and 𝑅 (𝑑𝐴𝑅) 30 m
Distance between 𝑆𝐵 and 𝑅 (𝑑𝐵𝑅) 30 m

Carrier frequency ( 𝑓𝑐) 900 MHz
Speed of the light (m/s) (𝑐) 3 × 108ms−1

Transmission power at 𝑆𝐴(𝑃𝐴) 1 W
Transmission power at 𝑆𝐵(𝑃𝐵) 1 W

Symbol duration (𝑇𝑠) 20 µs
𝑛𝐴
𝑅
, 𝑛𝐵
𝑅

200 bits
𝑛𝑅
𝐴
, 𝑛𝑅
𝐵

200 bits
𝑘𝐴
𝑅
, 𝑘𝐵
𝑅

32 bits
Noise power (𝜎2

𝑅
, 𝜎2

𝐴
, 𝜎2
𝐵

) -100 dBm
𝐸𝑚𝑎𝑥 0.001 J
𝑃𝑚𝑖𝑛 0.0001 mW
𝑃𝑟𝑒𝑞 0.01 mW

Power spitting factor (𝜌) 0.5
𝜔𝐴 0.5
𝜔𝐵 0.5

EH efficiency (𝜂) 0.9

Figure 4.3 presents the comparison of BLER performance between MC-based simulations
and theoretical approximations for both transmissions and EH policies. Theoretical BLER closely
matches simulation outcomes for both policies. In the context of the TWW policy, it is observed
that the BLER nearly reaches 1 when the transmission power of the sources is low. This is due
to the fact that, under the TWW policy, the relay does not wait to harvest enough energy for
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Figure 4.3: BLER as a function of transmission power.

transmission and EH depends solely on the power transmitted during the first transmission slot.
Consequently, with low transmission power from the source, the energy available for harvesting
remains insufficient. As a result, the received SNR at the receiver is very low, leading to a high level
of BLER. In contrast, increasing the transmission power of the sources enhances the EH capacity
of the relay, consequently allowing for the maintenance of a substantial level of transmission power
at the relay. As a result, this leads to a reduction in BLER when the transmission power of the
sources increases. On the contrary, BLER under the WUC policy remains relatively stable despite
changes in the transmission power of the sources. The WUC policy allows the relay to wait for
sufficient power before transmitting, maintaining a nearly constant relay transmission power. As a
result, it maintains a high received SNR at the receiver, leading to a low level of BLER. Therefore,
variations in the transmission power of the sources have a minimal impact on BLER, making the
WUC policy more suitable for applications requiring a high level of reliability.

In Figure 4.4, the weighted sum of AAoI is plotted as a function of transmission power at the
sources. Under both policies, as the transmission power at the sources increases, the weighted
sum of AAoI decreases. However, the decrease in the weighted sum of AAoI is more pronounced
under the WUC policy when power increases. This is due to, according to Lemma 6, the AAoI
under the WUC policy depending on the transmission waiting time 𝑇𝑤 and the BLER at the
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Figure 4.4: Weighed sum AAoI as a function of transmission power.

receiving end. Furthermore, according to Lemma 5, increasing transmission power at the source
leads to a reduction in both 𝑇𝑤 and BLER. As a result, increasing transmission power leads to
a reduction in the weighted sum of AAoI, especially due to the high influence of waiting time
reduction. On the other hand, as per Lemma 4, under the TWW policy, if transmission time is
fixed, only BLER becomes a main factor influencing the weighted sum of AAoI. From this figure,
it can be concluded that, especially under low-level transmission power, the influence of 𝑇𝑤 is
more significant than BLER on the weighted sum of AAoI. Thus, the TWW policy maintains
a low level of the weighted sum of AAoI when the transmission power is low compared to the
WUC policy. Consequently, the TWW policy emerges as a suitable choice for low-power IoT
applications with stringent requirements for information freshness. On the other hand, the WUC
policy proves more suitable for applications where reliability takes precedence over information
freshness. These findings highlight the significance of selecting an appropriate policy based on the
specific requirements of the application, ensuring optimal performance.

In Figure 4.5, the relationship between the weighted sum of the AAoI and block length for both
policies is illustrated. When the transmission power is high, there is a noticeable increase in AAoI
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Figure 4.5: Weighed sum AAoI as a function of block-length.

as the block length increases for both policies. Typically, an increase in block length leads to a
decrease in BLER [90] and an extension of transmission time. Lemmas 4 and 6 indicate that a
reduction in BLER should decrease AAoI, while also suggesting that prolonged transmission time
contributes to an increase in AAoI. In particular, in scenarios with high transmission power, the
impact of the extended transmission time becomes more pronounced than the reduction in BLER
on AAoI. Therefore, under high transmission power conditions, increasing the block length results
in an increase in the weighted sum of AAoI for both policies.

Under the TWW policy, when the transmission power is low, increasing the block length from
a small value reduces BLER [90]. Consequently, AAoI decreases according to Lemma 4 until it
reaches its optimal value. In this scenario, the decrease in BLER has a more significant impact on
AAoI compared to the increase in transmission time. However, once the block length surpasses
its optimal value, increasing it further only serves to extend the transmission time. Consequently,
AAoI starts to increase, especially in high-power scenarios. However, for the WUC policy, under
all transmission power scenarios, increasing the block length always increases the AAoI since it
maintains a higher received SNR level at the destination using constant transmission power in
the relay node. Hence, in the figure, it is observed that, beyond a block length of 200, under all
transmission power scenarios, AAoI exhibits the same behaviour. Furthermore, the gap between
the AAoI under the two policies decreases as the power level increases. This is due to increasing
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block length, which increases both transmission time and waiting time. Both parameters affect
AAoI under the WUC policy, while under the TWW policy, only an increase in transmission time
affects AAoI.

Additionally, concerning the WUC policy, numerical results closely match the approximated
outcomes. However, in the low- SNR regime for the TWW policy, the approximated AAoI results
do not align well with the numerically simulated results. This discrepancy arises due to the
approximations in (4.17) and (4.18) are accurate only for moderate SNR values [14]. Moreover,
this inconsistency is particularly evident when the block length is lower than 200, as finite block
length information theory-based approximations fail to reconcile with simulation-based results,
especially under low SNR scenarios.
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Figure 4.6: Weighed sum AAoI as a function of update size

In Figure 4.6, the weighted sum of AAoI is presented as a function of the update size for
both policies. Under low transmission power conditions, if the packet size increases, the AAoI
also increases under the TWW policy, while there is no significant change under the WUC policy.
This is due to the fact that under the TWW policy, due to low transmission power at the relay,
varying update sizes under a fixed block length increases BLER, which affects the AAoI as in
Lemma 4. However, under the WUC policy, the transmission power at the relay is maintained at a
satisfactory level, resulting in a low BLER. Additionally, there are no changes in the transmission
time or waiting time since the block length is fixed. Consequently, the AAoI under the WUC policy
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remains relatively unchanged when the block length varies. In a high-transmission power scenario,
the packet size does not have a significant impact on the AAoI for either policy. This is due to
the fact that with high SNR, the BLER is very small and increasing the update size results in a
slight increase in BLER [90]. However, the effect of this small variation in the BLER does not
significantly affect the AAoI, since other parameters such as the waiting time and the transmission
time are also fixed. Furthermore, it has been observed that the TWW policy outperforms the WUC
policy in terms of information freshness under low SNR scenarios for all packet sizes.
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Figure 4.7: Weighed sum AAoI as a function of distance.

Figure 4.7 illustrates the weighted sum AAoI as a function of the distance between the relay and
sources, where both sources are located at the same distance from the relay (i.e., 𝑑𝐵𝑅 = 𝑑𝐴𝑅). The
AAoI grows as the distance between the sources and the relay increases (i.e., the SNR drops). This
is due to the fact that decreasing the SNR increases BLER, as well as the waiting time for harvesting
under the WUC policy, thereby increasing AAoI according to Lemma 4 and 6. Additionally,
when the distance is increased, it increases AAoI under the TWW policy dramatically compared
to the linear growth under the WUC policy. This is due to the fact that under the TWW policy,
increments in distance increase BLER significantly due to low transmission power at the relay.
Moreover, the approximated results coincide with the numerically simulated results under the WUC
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policy, even for long distances. However, in relation to the TWW policy, as the distance increases,
there is a significant deviation between the approximated and simulated results. This discrepancy
is particularly noticeable for low SNR values, where the approximation used in (4.12) does not
perform as effectively for low SNR values [94]. Overall, the WUC policy outperforms the TWW
policy for long-distance communication since it maintains better freshness of the information at the
receiving node, whereas the TWW policy maintains a very high level of AAoI for long distances.
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Figure 4.8: Weighed sum AAoI as a function of 𝑃𝑟𝑒𝑞 under WUC policy.

Figure 4.8 shows the weighted sum AAoI as a function of 𝑃𝑟𝑒𝑞 under the WUC policy. This
figure reveals that there is an optimal value for 𝑃𝑟𝑒𝑞. The system exhibits a larger AAoI for small
𝑃𝑟𝑒𝑞 values, as this increases the BLER at the receiving node. In such circumstances, the impact
of the higher BLER at the opposing receiving source on AAoI becomes more significant than the
short waiting time required to harvest small 𝑃𝑟𝑒𝑞 values. In contrast, increasing 𝑃𝑟𝑒𝑞 from a low
value to an optimal value reduces AAoI, due to the reduction in BLER resulting from the higher
transmission power. In this scenario, the benefit of a small BLER is more significant than the
increased waiting time for harvesting. However, beyond the optimal value, the impact of waiting
time for harvesting outweighs the benefits of reduced decoding error. Thus, it can be observed
from the figure that increasing 𝑃𝑟𝑒𝑞 above its optimal value rapidly increases the AAoI of the
system. Additionally, for small 𝑃𝑟𝑒𝑞 values, the approximate AAoI deviates from the simulated
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value, where the approximation used in (4.12) does not perform as effectively for low SNR values
[94]. In summary, maintaining an optimal 𝑃𝑟𝑒𝑞 is essential to achieving a better AAoI under the
WUC policy.
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Figure 4.9: Weighed sum AAoI as a function of 𝑃𝑚𝑖𝑛 under TWW policy .

Figure 4.9 illustrates the weighted sum AAoI as a function of 𝑃𝑚𝑖𝑛 under the TWW policy. It
is observed that the weighted sum AAoI of the system monotonically increases with 𝑃𝑚𝑖𝑛, since
high 𝑃𝑚𝑖𝑛 threshold values increase update loss at the relay. This causes an increase in AAoI
due to infrequent updates at the receiving node. This emphasises the importance of the relay
being equipped with more efficient communication devices. Based on the simulation results, the
following key observations can be identified:

• The WUC policy is the optimal choice for applications with high-reliability requirements,
prioritizing reliability over information freshness. On the other hand, the TWW policy
is the preferred option for applications focused on achieving better information freshness
conditions.

• Under high SNR conditions, a short block length consistently maintains the freshness of
information. However, increasing the block length leads to an increase in AAoI. In
contrast, in the low SNR regime, short block lengths can increase AAoI due to the higher
frequency of erroneous updates, particularly under the TWW policy. Thus, short block-length
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communication does not always contribute to maintaining freshness, even though it helps to
achieve low latency.

• In high SNR conditions, the size of the update has a minimal impact on AAoI for both
policies. However, in low SNR conditions, AAoI increases with the update size, especially
under the TWW policy. Therefore, considering the update size is crucial when designing a
wireless communication system following the TWW policy.

• For applications with a large distance between the relay and the sources, the WUC policy
is the ideal choice. On the other hand, the TWW policy is more suitable for short-distance
applications.

• There exists a suboptimal value of 𝑃𝑟𝑒𝑞 in terms of minimising AAoI. This is mainly due
to the lower 𝑃𝑟𝑒𝑞 reducing the time required for EH, while simultaneously increasing the
probability of decoding errors.

These observations provide valuable insights into the performance and trade-offs of different
policies under varying SNR, block length, update size and distance conditions.

4.4 Conclusions

This chapter estimated the freshness of information in a SWIPT-assisted short-packet two-way
relaying wireless communication system formission-critical applications. Two types of transmission
policies at the relay were considered, namely, TWW and WUC. Approximations were derived for
the weighted sum of AAoI of the relay system for both policies. Furthermore, the effect of various
factors on the weighted sum AAoI of the proposed system was studied, including transmission
power, packet size, the distance between the relay and sources and block length. Moreover, it
was observed that short block lengths support maintaining the freshness of the information only
when the SNR is high. In addition, it is noticed that the TWW policy outperforms in terms of
AAoI while WUC policy is best suited when the wireless communication application requires
higher reliability. Furthermore, it was discovered that packet size under fixed block length does
not influence data freshness in the high SNR regime. However, short packet communication
supports maintaining a better AoI in the low SNR regime under fixed block-length. Considering
all the numerical simulation results, it is proven that WUC is the optimal transmission policy
for applications with high-reliability requirements, while TWW is best for applications with high
information freshness requirements. Future work could involve deploying a small-scale prototype
to compare the effectiveness of these transmission policies in a more realistic environment.
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Chapter 5

AoI-Inspired UAV-Assisted Wireless
Sensor Networks

5.1 Introduction

This chapter proposes a theoretical model that utilises the AoI metric and finite block length
information theory to estimate information freshness in an UAV-assisted WSN. This network
includes multiple sensing nodes and relies on short-packet communication for transmission. In this
chapter, closed-form expressions for a AAoI and the BLER are derived. Furthermore, the optimal
altitude and block length that ensure the freshness of received information at the destination is
determined. The results of the analysis provide valuable insights into the performance characteristics
of UAV-assisted WSNs and have important implications for the design and optimisation of such
systems.

The chapter addresses the pivotal problem of analysing the average AAoI for UAV-assisted
WSNs with multiple sensing nodes. A novel theoretical framework is developed that synergistically
combines the AoI metric with finite block-length information theory to estimate information
freshness in such multi-source settings under short-packet transmissions. The key motivations
are to bridge the gap in existing literature by extending AoI analysis to realistic multi-source
scenarios and to leverage finite block-length information theory principles which are better suited
for analysing short-packet communications compared to traditional approaches assuming infinitely
long block lengths. The main contributions include developing this theoretical model, deriving
closed-form expressions for the AAoI and BLER, determining the optimal UAV altitude, block
length and sensor activation probability that minimises the AAoI, and formulating a lemma that
specifies the optimal sensor activation probability to maintain an optimal AoI at the destination.
Through comprehensive simulations, the work validates the lemma’s efficacy and demonstrates
that the proposed UAV-assisted WSN significantly outperforms traditional fixed base transceiver
station (BTS)-based systems in maintaining information freshness, particularly in urban scenarios
where the performance gap is substantial.

The remaining sections of this chapter are organised as follows: Section 5.2 presents the system
model and evaluates the BLER and the AAoI of the network. Section 5.3 presents numerical
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Figure 5.1: System model of UAV-assisted WSN: A UAV at altitude 𝐻 serving as a DF relay
between sensor nodes 𝑆𝑘 and the destination node 𝐷.

simulation results and evaluates the performance of the system. Finally, Section 5.4 summarises
the conclusions drawn in the chapter.

5.2 System Model

As shown in Figure 5.1, a UAV-assisted WSN is considered, where the UAV (𝑈) is placed at an
altitude of 𝐻 and it acts as a wireless DF relay between the sensor nodes (𝑆𝑘∀ 𝑘 ∈ {1, ..., 𝐾}) and
the destination (𝐷) node. Suppose that each ground node 𝑆𝑘 has a fixed location 𝐿𝑘= (𝑋𝑘 ;𝑌𝑘 ; 0)
the location of the UAV and Destination are denoted as 𝐿𝑈=(𝑋𝑈;𝑌𝑈;𝐻) and 𝐿𝐷= (𝑋𝐷;𝑌𝐷; 0)

respectively. The horizontal distance between each node 𝑖 and 𝑗 is 𝑙𝑖, 𝑗 =
√︃(
𝑋𝑖 − 𝑋 𝑗

)2 +
(
𝑌𝑖 − 𝑌 𝑗

)2

where 𝑖 ∈ (𝑆𝑘 ,𝑈) , 𝑗 ∈ (𝑈, 𝐷). The 𝑆𝑘 is said to be in the coverage of the UAV if their horizontal
distance 𝑙𝑘,𝑈 is less than or equal to 𝑟. The elevation angle of UAV is 𝜃𝑘 and if it is measured
from the 𝑆𝑘 , 𝜃𝑘 = arctan( 𝐻

𝑙𝑘,𝑈
) and if it is measured from the 𝐷, 𝜃𝐷 = arctan( 𝐻

𝑙𝑈,𝐷
). In this

wireless communication system, the transmission time is divided into equal intervals known as time
blocks. Each time block is further divided into two slots and each slot is used to transmit a single
packet. Each sensor node in the network becomes active independently with a probability of 𝑃𝑎, 𝑗
at the beginning of each block and the probability follows a binomial distribution with parameters
(𝐾; 𝑃𝑎, 𝑗). The system does not consider any feedback or re-transmission policies, which means
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that each update is delivered only once. In the first slot, sensor nodes send data to the UAV relay
and all sensor nodes share the same wireless resources. In the second slot, the UAV decodes and
transmits the data to the destination. There is no direct communication between the sensor nodes
and the destination.

The system considers both LoS and NLoS links between the UAV and the ground stations (sensor
nodes or destination). The probability of LoS between the UAV and ground station 𝑙 ∈ (𝑆𝑘 , 𝐷),
𝑃𝐿𝑜𝑆 can be expressed as follows [14, 157]:

𝑃LoS(𝜃𝑙) =
1

1 + 𝐴𝑠 exp(−𝐵𝑠(𝜃𝑙 − 𝐴𝑠))
, (5.1)

where 𝐴𝑠 and 𝐵𝑠 are S-curve parameters that are completely dependent on the environment. The
large-scale channel gain 𝛼𝑖 𝑗 for the channel between transmitting node 𝑖 ∈ (𝑆𝑘 ,𝑈) and receiving
node 𝑗 ∈ (𝑈, 𝐷) is determined as follows [14]:

(5.2)−10 log(𝛼𝑖 𝑗) = 20 log(𝑑𝑖, 𝑗) + 20 log(
4𝜋 𝑓𝑐𝑖, 𝑗
𝑐

) + 𝜂𝑁𝐿𝑂𝑆 +
𝜂𝐿𝑂𝑆 − 𝜂𝑁𝐿𝑂𝑆

1 + 𝐴𝑠 exp(−𝐵𝑠(𝜃𝑙 − 𝐴𝑠)
,

where 𝑓𝑐𝑖, 𝑗 and 𝑐 are the carrier frequency (Hz) and the speed of the light (m/s), respectively. 𝜂𝐿𝑜𝑆
and 𝜂𝑁𝐿𝑜𝑆 are the expectations of the additional environment-dependent excessive path loss for
the LoS and NLoS components, respectively. Assuming that the three nodes remain static during
transmission and ignoring the Doppler effect, the Rician fading model is employed to investigate
the small-scale channel characteristics and multi-path propagation in this system 1. The probability
distribution of 𝑔𝑖 𝑗 follows a non-central chi-square distribution and the PDF 2 for the small-scale
channel gain can be expressed as:

𝑓𝑔𝑖 𝑗 (𝑧) =
(
𝐾 𝑓 + 1

)
𝑒−𝐾 𝑓

�̄�𝑖 𝑗
𝑒

−(𝐾 𝑓 +1)𝑧
�̄�𝑖 𝑗 𝐼0

©«2

√︄
𝐾 𝑓

(
𝐾 𝑓 + 1

)
𝑧

�̄�𝑖 𝑗

ª®¬ , (5.3)

where 𝑧 ≥ 0, �̄�𝑖 𝑗=1, 𝐼0 (·) is the zero-order modified Bessel function of the first kind and 𝐾 𝑓 is the
Rician factor, which can be expressed as follows [14, 159]:

𝐾 𝑓 =
𝑃LoS (𝜃𝑙)

1 − 𝑃LoS (𝜃𝑙)
=

1
𝐴𝑠 exp(−𝐵𝑠(𝜃𝑙 − 𝐴𝑠))

. (5.4)

Then, the instantaneous SNR at each receiving node 𝛾 𝑗 can be calculated as follows:

𝛾 𝑗 =
𝛼𝑖 𝑗𝑔𝑖 𝑗𝑃𝑖

𝜎2 , (5.5)

where 𝑃𝑖 is the transmission power at node 𝑖 and 𝜎2 is the noise power at the receiver. In addition,
the expectation of 𝛾 𝑗 as a function of 𝑙𝑖, 𝑗 (�̄� 𝑗(𝑙𝑖, 𝑗) ) can be derived as follows:

�̄� 𝑗
(
𝑙𝑖, 𝑗

)
=
�̃�𝑒

�̃�

1+𝐴𝑠 exp(−𝐵𝑠 (arctan
(
𝐻
𝑙𝑖, 𝑗

)
−𝐴𝑠 ))(

𝑙2
𝑖, 𝑗

+ 𝐻2
) , (5.6)

1The small-scale channel gain 𝑔𝑖 𝑗 is denoted as 𝑔𝑖 𝑗 = |𝐻2
𝑖 𝑗
|, where 𝐻𝑖 𝑗 represents the Rician fading channel

coefficient.
2𝐹𝑋(𝑥) and 𝑓𝑋(𝑥) represents the CDF and PDF of an arbitrary random variable X, respectively.

69



CHAPTER 5. AOI-INSPIRED UAV-ASSISTED WIRELESS SENSOR NETWORKS

where �̃� = −(𝜂𝐿𝑂𝑆−𝜂𝑁𝐿𝑂𝑆 ) ln(10)
10 and �̃� = 𝑃𝑖10−

�̃�
10

𝜎2 , where �̃� = 20 log
( 4𝜋 𝑓𝑐𝑖, 𝑗

𝑐

)
+ 𝜂NLOS. Further-

more, the conditional PDF of SNR at the UAV ( 𝑓𝛾𝑘,𝑈 (𝑧 | 𝑙𝑘,𝑈)) is given by:

𝑓𝛾𝑘,𝑈 (𝑧 | 𝑙𝑘,𝑈) =
(
𝐾 𝑓 + 1

)
𝑒−𝐾 𝑓

�̄�𝑘,𝑈
𝑒

−(𝐾 𝑓 +1)𝑧
�̄�𝑘,𝑈 𝐼0

©«2

√︄
𝐾 𝑓

(
𝐾 𝑓 + 1

)
𝑧

�̄�𝑘,𝑈

ª®¬ . (5.7)

Thus, 𝐹𝛾𝑘,𝑈 (𝑧 | 𝑙𝑘,𝑈) can be derived as in [163]:

𝐹𝛾𝑘,𝑈
(
𝑧, | 𝑙𝑘,𝑈

)
= 1 −𝑄1

©«
√︁

2𝐾 𝑓 ,

√︄
2
(
𝐾 𝑓 + 1

)
𝑧

�̄�𝑘,𝑈

ª®¬ , (5.8)

where 𝑄1 (·, ·)is first-order Marcum Q-function. However, due to the intricate complexity of the
Marcum Q-function, an approximation is utilised as in [174] at the high SNRs in order to derive a
closed-form equation for 𝐹𝛾𝑘,𝑈 (𝑧 | 𝑙𝑘,𝑈) as follows:

𝐹𝛾𝑘,𝑈
(
𝑧, | 𝑙𝑘,𝑈

)
≈
𝑒−𝐾 𝑓

(
1 + 𝐾 𝑓

)
𝑧

�̄�𝑘,𝑈
. (5.9)

Furthermore, 𝐹𝛾𝑘,𝑈 (𝑧) can be formulated as follows:

𝐹𝛾𝑘,𝑈 (𝑧) =
∫∞

0
𝐹𝛾𝑘,𝑈

(
𝑧 | 𝑙𝑘,𝑈

)
𝑓𝑙𝑘,𝑈

(
𝑙𝑘,𝑈

)
𝑑𝑙𝑘,𝑈 , (5.10)

where 𝑓𝑙𝑘,𝑈
(
𝑙𝑘,𝑈

)
can be calculated as follows, since it is assumed that sensor nodes are uniformly

distributed :

𝑓𝑙𝑘,𝑈
(
𝑙𝑘,𝑈

)
=

{ 2𝑙𝑘,𝑈
𝑟2 , 𝑙𝑘,𝑈 ≤ 𝑟,
0, otherwise.

(5.11)

Moreover, (5.10) can be reformulated as follows using (5.6), (5.9), (5.10) and (5.11) :

𝐹𝛾𝑘,𝑈 (𝑧) =
2
�̃�𝑟2

∫𝑟
0

𝑒
− 𝑊𝑙

1−𝑊𝑙 𝑧

(
𝑙2
𝑘,𝑈

+ 𝐻2
)
𝑙𝑘,𝑈

(1 −𝑊𝑙) 𝑒 �̃�𝑊𝑙︸                           ︷︷                           ︸
𝑞𝑙 (𝑙𝑘,𝑈 ,𝑧)

𝑑𝑙𝑘,𝑈 , (5.12)

where𝑊𝑙 = 1
1+𝐴𝑠 exp(−𝐵𝑠(arctan

(
𝐻
𝑙𝑘,𝑈

)
−𝐴𝑠))

. Then, since the GCQ method converges much faster than

other approximation methods, it has been employed for the integration of 𝑞𝑙(𝑙𝑘,𝑈 , 𝑧) to obtain a
closed-form expression for (5.13) as follows [166]:

𝐹𝛾𝑘,𝑈 (𝑧) ≈ 2
�̃�𝑟

𝑀∑︁
𝑚=1

𝑀

𝜋

√︃
1 − 𝜙2

𝑚𝑞𝑙(𝛼𝑙, 𝑧) + 𝑅𝑚, (5.13)

where 𝜙𝑚 = 𝑐𝑜𝑠

(
2𝑚−1𝜋
𝑀

)
, 𝛼𝑙 = 𝑟

2𝜙𝑚 + 𝑟
2 , 𝑀 is the complexity-accuracy trade-off factor. 𝑅𝑀 is

the error term and at high 𝑀 values, 𝑅𝑀 becomes negligible and has little impact on the overall
system performance. Furthermore, the CDF of 𝛾U,D can be expressed as in [163] :

𝐹𝛾U,D (𝑧) = 1 −𝑄1
©«
√︁

2𝐾 𝑓 ,

√︄
2
(
𝐾 𝑓 + 1

)
𝑧

�̄�𝑈,𝐷

ª®¬ , (5.14)
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where 𝑄1 (·, ·) is the first-order Marcum Q-function, a function that is challenging to manipulate
directly [175]. Thus, a semi-linear approximation is employed to derive a closed-form expression
for 𝐹𝛾U,D (𝑧) as in [14, 175]:

𝐹𝛾U,D (𝑧) ≃ Ξ
©«
√︁

2𝐾 𝑓 ,

√︄
2
(
𝐾 𝑓 + 1

)
𝑧

�̄�𝑈,𝐷

ª®¬ ,
≃ Ξ (𝜔1, 𝜔2) ,

(5.15)

where Ξ(·, ·) is the semi-linear approximation of the 1−𝑄1 (·, ·) and it can be calculated as in [175].

5.2.1 Block Error Probability

In order to analyse decoding error probability 𝜀 𝑗 using finite block length information theory, it is
assumed that fading coefficients remain constant throughout each transmission block. In addition,
it is assumed that the receiver possesses accurate CSI. Consequently, the expectation of decoding
error probability at each receiving node is expressed as follows [89]:

𝜀 𝑗 = E


𝑄

©«
𝑛𝑖, 𝑗

(
log2(1 + 𝛾 𝑗)

)
− 𝑘𝑏√︂

𝑛𝑖, 𝑗

(
log2

2𝑒
2 (1 − 1

(1+𝛾 𝑗 )2 )
) ª®®®®¬


, (5.16)

where E [·] denotes the expectation operator and 𝑄(𝑥) = 1√
2𝜋

∫∞
𝑥
𝑒−

𝑡2
2 𝑑𝑡. It is assumed that 𝑘𝑏

information bits are contained in a 𝑛𝑖, 𝑗 bit length block. Moreover, under the Rician fading block
fading conditions, 𝜀 𝑗 can be expressed as

𝜀 𝑗 =
∫∞

0
𝑓𝛾 𝑗 (𝑧)𝑄

©«
𝑛𝑖, 𝑗

(
log2(1 + 𝛾 𝑗)

)
− 𝑘𝑏√︂

𝑛𝑖, 𝑗

(
log2

2𝑒
2 (1 − 1

(1+𝛾 𝑗 )2 )
) ª®®®®¬
𝑑𝑧. (5.17)

Obtaining a closed-form expression for the overall decoding error probability can be challenging
due to the complexity of the Q-function. To address this matter, an approximation technique similar
to the approach in [14, 94] has been used as follows:

𝜀j ≈ 𝛽 𝑗
√
𝑛𝑖, 𝑗

∫ 𝛿 𝑗

𝜙 𝑗

𝐹𝛾j(𝑧)𝑑𝑧 ≃ 𝐹𝛾 𝑗
(
𝜓j

)
. (5.18)

where 𝛽 𝑗 = 1

2𝜋

√︂
2

2𝑘𝑏
𝑛𝑖, 𝑗 −1

, 𝜓 𝑗 = 2
𝑘𝑏
𝑛𝑖, 𝑗 − 1, 𝜙 𝑗 = 𝜓 𝑗 − 1

2𝛽 𝑗
√
𝑛𝑖, 𝑗

and 𝛿 𝑗 = 𝜓 𝑗 + 1
2𝛽 𝑗

√
𝑛𝑖 𝑗

. Then, using

(5.13), (5.15) and (5.18) closed form expression for block error at each node can be derived. The
probability of a node successfully updating the UAV at the end of the first time slot, denoted by
𝜏𝑘,𝑈 , occurs when a node transmits during the slot, no other node transmits and the UAV correctly
decodes the packet. Then, 𝜏𝑘,𝑈 can be calculated as follows:

𝜏𝑘,𝑈 = 𝑃𝑎,𝑘
(
1 − 𝜀𝑘,𝑈

) ∏
𝑘 ̸= 𝑗

(
1 − 𝑃𝑎, 𝑗

)
. (5.19)

Then, the overall decoding error probability can be expressed as 𝜀𝑜𝑣𝑟,𝑘= 1 − 𝜏𝑘,𝑈 + 𝜀𝑈,𝐷𝜏𝑘,𝑈 [94].
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5.2.2 AoI Analysis

The AAoI at the 𝐷 for updates receiving each node 𝑆𝑘 is computed as follows, using [14]:

Δ𝐴𝐴𝑂𝐼𝑘 =
E[𝑑𝑋𝑘

2]
2E[𝑋𝑘]

+ 𝑇, (5.20)

where 𝑑𝑋 𝑘 denotes the inter-departure time between two consecutive successfully received status
updates at 𝐷. It assumes that the end-to-end delay of each successfully received update is always
a constant, this is given by 𝑇=

(
𝑛𝑘,𝑈 + 𝑛𝑈,𝐷

)
𝑇𝑠, where 𝑇𝑠 is the symbol duration. The inter-

departure time 𝑑𝑋 𝑘 is a geometric random variable with mean E
[
𝑑𝑋𝑘

]
= 𝑇

1−𝜀𝑜𝑣𝑟,𝑘 and second

moment E
[
𝑑𝑋𝑘

2
]

= 2𝑇2

(1−𝜀𝑜𝑣𝑟,𝑘)2 − 𝑇2

1−𝜀𝑜𝑣𝑟,𝑘 . Then, (5.20) can be reformulated as follows:

Δ𝐴𝐴𝑂𝐼𝑘 = 𝑇
(
1
2

+
1

1 − 𝜀𝑜𝑣𝑟,𝑘

)
. (5.21)

Finally, the network AAoI Δ𝐴𝐴𝑂𝐼𝑛𝑒𝑡 can be calculated as follows [176]:

Δ𝐴𝐴𝑂𝐼𝑛𝑒𝑡 =
𝑇

2
+
𝑇

𝐾

𝐾∑︁
𝑘=1

1
1 − 𝜀𝑜𝑣𝑟,𝑘

. (5.22)

Lemma 7. The optimal value for the active probability of sensors that minimisesΔ𝐴𝐴𝑂𝐼𝑛𝑒𝑡 is 𝑃∗
𝑎,𝑘

≈ 1
𝐾

.

Proof: It is assumed that in networks comprising numerous nodes, node 𝐾 is likely to have
a small optimal active probability 𝑃∗

𝑎,𝑘
. Then, using inequality 1 − 𝑦 ≤ 𝑒−𝑦 and 1 − 𝑦 ≈ 𝑒−𝑦 for

small 𝑦, (5.19) can be reformulated as follows:

𝜏𝑘,𝑈 ≤
𝑃𝑎,𝑘

(
1 − 𝜀𝑘,𝑈

)(
1 − 𝑃𝑎,𝑘

) 𝑒
−∑𝐾

𝑗=1 𝑃𝑎, 𝑗 . (5.23)

Then, Δ̂𝐴𝐴𝑂𝐼𝑛𝑒𝑡 the lower bound of Δ𝐴𝐴𝑂𝐼𝑛𝑒𝑡 can be calculated as

Δ𝐴𝐴𝑂𝐼𝑛𝑒𝑡 ≥ Δ̂𝐴𝐴𝑂𝐼𝑛𝑒𝑡 =
𝑇

2
+
𝑇𝑒

∑𝐾
𝑗=1 𝑃𝑎, 𝑗

𝐾

𝐾∑︁
𝑘=1

1
Φ𝑘

(
1
𝑃𝑎,𝑘

− 1
)
, (5.24)

where Φ𝑘 =
(
1 − 𝜀𝑘,𝑈

) (
1 − 𝜀𝑈(𝑘),𝐷

)
. Then, defining the quantities as

𝐴 =
𝐾∑︁
𝑘=1

1
Φ𝑘

(
1
𝑃𝑎,𝑘

− 1
)

and 𝐴′ =
𝐾∑︁
𝑘=1

1
Φ𝑘𝑃𝑎,𝑘

, (5.25)

the first-order optimality conditions for Δ̂𝐴𝐴𝑂𝐼𝑛𝑒𝑡 can be calculated as 𝑃𝑎,𝑘 = 1√
𝐴Φ𝑘

. As in (5.25),
𝐴 < 𝐴′ and as a result, 𝑃∗

𝑎,𝑘
can be derived as follows:

𝑃𝑎,𝑘 ≥
1

𝐴′Φ𝑘𝑃𝑎,𝑘
=
√
𝐴Φ𝑘

𝐴′Φ𝑘
=

1/
√
Φ𝑘∑𝐾

𝑗=1
(
1/
√
Φ𝑘

) ≈ 1
𝐾

≈ 𝑃∗
𝑎,𝑘 . (5.26)
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5.3 Simulation Results

In this section, numerical results are presented to validate the theoretical derivations. Unless
otherwise specified, the simulation parameters are set as 𝑟 = 400 m, 𝑑𝑈,𝐷 = 1000 m, 𝐻 = 500 m,
𝑓𝑐𝑆𝑘 ,𝑈

= 900 MHz, 𝑓𝑐𝑈,𝐷 = 2.4 GHz, 𝑐 = 3×108ms−1, 𝜂𝐿𝑜𝑆 (Suburban) = 0.1 dB, 𝜂𝑁𝐿𝑜𝑆 (Suburban)
= 21 dB, 𝜂𝐿𝑜𝑆 (Urban) = 1 dB, 𝜂𝑁𝐿𝑜𝑆 (Urban) = 20 dB, 𝜂𝐿𝑜𝑆 (Dense urban) = 1.6 dB, 𝜂𝑁𝐿𝑜𝑆
(Dense Urban) = 23 dB, 𝜂𝐿𝑜𝑆 (High-rise urban) = 2.3 dB, 𝜂𝑁𝐿𝑜𝑆 (High-rise Urban) = 34 dB, P𝑆𝑘
= 90 mW, P𝑈 = 0.2 W, 𝑇𝑠 =17 µs, 𝑛𝑘,𝑈 = 54 bits, 𝑛𝑈,𝐷 = 54 bits, 𝑘𝑏 = 32 bits, 𝑃𝑎 = 0.2, 𝐾 = 5
nodes and 𝜎2 = -100 dBm [159].

In Figure 5.2, the network AAoI is plotted against the altitude of the UAV using (5.22). The
results indicate that the optimal altitude is 600 m in all environmental conditions. At lower altitudes,
the network AAoI is higher due to the high error probability caused by the weak LoS. As altitude
increases towards the optimal value, the AAoI decreases rapidly due to a stronger LoS that outweighs
the impact of path loss. However, beyond the optimal altitude, the path loss dominates other factors,
leading to a higher network AAoI. When the altitude is between 250 m - 700 m, the network AAoI
is at its minimum for all environments except for high-rise urban. The network AAoI cannot be
reduced to its minimum due to a low SNR caused by weak LoS conditions in high-rise urban areas.
The suburban environment has the lowest AAoI for all altitudes due to strong channel conditions.
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Figure 5.2: Network AAoI as a function of UAV altitude for different environments.
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Figure 5.3 shows the impact of block length on network AAoI in this system. Longer block
lengths increase system delay, as transmission time directly correlates with block length. Conversely,
shorter block lengths result in more decoding errors. For smaller block lengths, decoding error
probability significantly affects AAoI compared to transmission time. However, when the block
length increases towards its optimal value, AAoI decreases due to fewer decoding errors. Beyond
optimal value, the increase in transmission time outweighs the reduction in transmission errors,
resulting in a higher AAoI. Therefore, when selecting the block length in a wireless communication
system, it is important to balance the trade-offs between transmission time and decoding error to
ensure optimal AAoI performance of the system.

100 150 200 250 300 350 400 450 500

10
-1

10
0

Figure 5.3: Network AAoI as a function of block length for different environments.

Figure 5.4 illustrates the relationship between the network AAoI and the active probability (𝑃𝑎)
for different numbers of nodes. As illustrated in the figure, a small active probability results in a
higher network AAoI due to the scarcity of frequent status updates at the destination. As the active
probability increases towards its optimal point, the AAoI decreases due to more frequent updates at
the destination. However, beyond the optimal value, increasing the active probability increases the
network AAoI due to a higher number of transmission collisions. Notably, Figure 5.4 highlights
that the system achieves the minimum network AAoI when 𝑃𝑎 ≈ 1/𝐾 , as stated in Lemma 7.

74



5.3. SIMULATION RESULTS

0.2 0.4 0.6
10

-3

10
-2

10
-1

10
0

Figure 5.4: Network AAoI as a function of Active Probability (𝑃𝑎) for different numbers of nodes
(𝐾) in a wireless network.

Figure 5.5 illustrates the relationship between network AAoI and total transmission power
for the UAV-assisted WSN and traditional fixed BTS-based system under different environmental
conditions. As shown, transmission power significantly impacts AAoI, with AAoI decreasing
as transmission power increases in both scenarios. However, in the UAV-assisted WSN model,
AAoI remains nearly constant beyond 0.1W due to the low transmission error rate at the receiver.
The UAV-assisted WSN significantly improves information freshness compared to the traditional
fixed terrestrial-based BTS-assisted WSN, with a larger performance gap in urban scenarios. The
proposed UAV-assisted WSN model better maintains information freshness in WSNs under various
environmental conditions, particularly in dense urban areas where traditional fixed BTS-based
systems fail due to poor LoS conditions. This makes the model suitable for real-world urban
applications, such as smart city scenarios and disaster management. In smart cities, UAV-assisted
WSNs enable efficient monitoring of traffic, air quality, noise levels and energy consumption. In
disaster management, the model ensures accurate and up-to-date information collection, enabling
informed decision-making and effective resource allocation by emergency responders, ultimately
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saving lives in the aftermath of natural disasters or emergencies.
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Figure 5.5: Network AAoI vs. total transmission power for UAV − assisted and fixed BTS− based
WSNs under different environments.

5.4 Conclusions

This chapter presents a study on the freshness of data in a UAV-assisted WSN with multiple sensors,
using AoI as a metric. Closed-form expressions for the network AAoI and block error probability,
which depend on the UAV altitude, block length and activation probability of sensors, have been
derived. Our numerical analysis reveals the existence of an optimal block length, UAV altitude
and activation probability that minimises the network AAoI, thus ensuring the freshness of the
sensor network. Both theoretical analysis and simulation results demonstrates that the optimal
activation probability minimises the network AAoI. This approximately equals the reciprocal of the
number of nodes in the network. Furthermore, the simulation results clearly show that the proposed
UAV-assisted WSN system significantly outperforms the traditional fixed-BTS based system in
terms of maintaining the freshness of information. The proposed system model guides the system
designers in allocating communication resources for UAV-assisted WSNs and designing more
reliable and efficient WSN systems in practical applications. While this study focuses specifically
on UAV-assisted WSNs, integrating edge servers with WSN systems could also further enhance the
freshness of the information. Future research should explore how this type of system enhances the
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freshness of the information and conduct a comparative analysis between the UAV-based solution
and the edge server-based solution to provide valuable insights into the optimal design of WSN
systems.

Publications arising from this Chapter

1. [6] Basnayaka, C. M. W., Jayakody, D. N. K., & Beko, M. (2024). Freshness-in-air: An
AoI-inspired UAV-assisted wireless sensor networks. ICT Express, 10(5), 1103-1109.
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Chapter 6

Age of Information in Semantic
Communications

6.1 Optimizing Real-Time Freshness: Deep Joint Source-Channel
Coding-Based AoI in Wireless Networks

6.1.1 Introduction

This section proposes a DJSCC to minimise the AoI for image transmission. A new content-based
AoI metric called AoMI is introduced to estimate the freshness of the information in an image
classification system. AoMI is a critical metric in timely information delivery, measuring the
age of the most recently received and correctly classified image at the receiver. The proposed
system leverages a Deep neural network (DNN) at the transmitter to map image pixels directly
to channel input symbols, eliminating the need for separate source and channel coding. At the
receiver, the channel output is processed to perform image classification. To analyse the AoMI
performance of the system, the SHS approach is employed. Closed-form expressions for the average
AoMI (AAoMI) are derived, providing insights into the impact of system parameters on the AoMI.
Simulation results demonstrate the effectiveness of the proposed DJSCC-based system in achieving
lower AoMI compared to traditional separate source and channel coding schemes. The findings
highlight the potential of deep learning techniques to maintain the freshness of the information in
wireless communication systems.

Whilst AoI provides valuable insights into the timeliness of information delivery, it does
not capture the impact of information content on the usefulness of the delivered data. In many
applications, such as image classification in surveillance systems, not all information updates
are equally important. The successful delivery of key semantic information is more critical
than receiving every single update. Motivated by this observation, this section proposes a novel
performance metric called AoMI, which measures the age of the most recently received and correctly
classified semantic information at the receiver. To minimise AoMI in wireless image classification
systems, this section leverages the recent advancements in deep learning and proposes a DJSCC
approach. DJSCC utilises a DNN to map the source signal directly to the channel input, eliminating
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the need for separate source and channel coding. This approach has shown promising results in
improving the efficiency and robustness of wireless communication systems [177].

The main contributions of this section are as follows: (1) introducing a new performance
metric, AoMI, to measure the freshness of correctly classified semantic information in wireless
communication systems; (2) proposing a DJSCC-based system that minimizes AoMI by using a
DNN at the transmitter to map image pixels directly to channel input symbols and a classifier at the
receiver for image classification; (3) developing a SHS approach to analyse the AoMI performance,
deriving closed-form expressions for AAoMI; and (4) conducting extensive simulations to evaluate
the AoMI of the proposed system and compare it with traditional separate source and channel
coding schemes using better portable graphics (BPG) [178] compression and LDPC coding [179].

To the best of the authors’ knowledge, this is the first work that investigates the use of DJSCC
for minimising AoI in wireless communication systems. The rest of this section is organised as
follows: Sub-section 6.1.2 describes the system model, the proposed DJSCC-based approach and
the AAoMI analysis using SHS. Sub-section 6.1.3 provides the simulation results and discussions.
Finally, Sub-section 6.1.4 concludes the section.

6.1.2 System Model

The study introduces a wireless communication system arrangement consisting of transmitter,
channel and receiver components, as shown in Figure 6.1, for image transmission. It is assumed
that the source image-capture process adheres to a Poisson point process. The transmitter employs
the DJSCC technique for wireless image transmission, mapping image pixel values onto complex-
valued channel input symbols. These complex-valued channel input symbols are subsequently
transmitted through a wireless communication channel between the source and destination. One of
the key aspects of this system model is the joint training of both the transmitter and receiver. This
collaborative training strategy enables adaptation to changing channel conditions, ensuring robust
image transmission despite the inherently dynamic nature of the channel.

In the considered system, the receiver executes classification tasks utilising the channel output.
The input image is denoted as 𝑰 ∈ R𝐼𝐻×𝐼𝑊×𝐼𝐶 , where 𝐼𝐻 , 𝐼𝑊 and 𝐼𝐶 represent the height, width
and number of colour channels, respectively. The total number of pixels in the image is denoted as
𝑘𝑃 = 𝐼𝐻 × 𝐼𝑊 × 𝐼𝐶 , which is referred to as the source bandwidth. The transmitter employs a DNN
encoded by the DJSCC encoder, denoted as 𝑓 (·, 𝝑), where 𝝑 represents the learnable parameters
of the network. Given an input source signal 𝑰, the output encoded semantic features 𝑆 produced
by 𝑓 (·, 𝝑) are expressed as 𝒔 = 𝑓 (𝑰, 𝝑) and 𝑆 belongs to the real vector space R2𝑛𝑇 , where 𝑛𝑇 is the
channel bandwidth. The ratio "𝑛𝑇/𝑘𝑃" is called the bandwidth ratio [180]. The encoded semantic
features 𝑆 are then reshaped into complex-valued symbols 𝑛𝑇 to form the encoded signal 𝒔. After
encoding the semantic signal 𝑆 from the images received from the source 𝑰, a normalisation step
ensures that 𝒔 satisfies the average power constraint as

1
𝑛𝑇

E∥𝒔∥2≤ 𝑃, (6.1)
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Figure 6.1: Proposed DJSCC-based communication system. The transmitter sends images captured
by a source, assuming a Poisson point process for image capture. DJSCC technique is used for
wireless image transmission. The receiver processes channel output for classification.

where E [·] denotes the expectation operator, ∥·∥ denotes Euclidean norm of for a complex-valued
vector 𝑥 and 𝑃 denotes the transmission power of the source. Subsequently, the encoded signal 𝒔
is transmitted through the wireless channel between the source and the destination. It is assumed
that the channel’s characteristics remain stable throughout the transmission of a single symbol;
however, they may independently vary when subsequent symbols are transmitted. Consequently,
the received signal, represented as 𝒛∈ C𝑛𝑇 and can be expressed as follows, where C𝑥×𝑦 denotes
the space of 𝑥 × 𝑦 complex-valued matrices :

𝒛 =
√
𝑃𝒔 + 𝑾𝒏, (6.2)

where 𝑾𝒏 ∼ CN (0, 𝜎2𝑰𝒏) represents independent and identically distributed (i.i.d.) circularly
symmetric complex Gaussian noise with an average noise power of 𝜎2, where 𝑰𝒏 stands for an
identity matrix and CN represents complex normal (Gaussian) distribution. The average SNR is
then given by �̄� = 10 log10

𝑃

𝜎2 (dB).
At the receiver end, the real and imaginary components of 𝒛 are reshaped to form �̂� ∈ R2𝑛𝑇

for further processing. The receiver then performs classification tasks based on �̂�. This involves
feeding the derived features �̂� into a classifier 𝑀(·, 𝝉), where 𝝉 denotes the learnable parameters
of the network. The classifier outputs the classification result 𝐿 = 𝑀(�̂�, 𝝉). The performance of
the image classification task is evaluated using classification accuracy. The encoder consists of
convolutional neural network (CNN) layers, followed by normalization through Generalized divisive
normalization (GND) transformations and a parametric rectified linear unit (PReLU) activation
function. This architecture is chosen because CNN layers are effective at extracting salient features
from images, GND facilitates local divisive normalization beneficial for density modeling and
image compression and non-linear activations allow learning complex mappings from the source
signal space to the channel input space. The classifier model uses dense layers with activation
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Table 6.1: Encoder-decoder architectures for DJSCC

Layer Properties

Encoder
Input input size: 32 × 32 × 3
SignalConv2D filter: 16, kernel: (9, 9), activations: [GDN, PReLU]
SignalConv2D filter: 16, kernel: (5, 5), activations: [GDN, PReLU]
SignalConv2D filter: 16, kernel: (5, 5), activations: [GDN, PReLU]
SignalConv2D filter: 16, kernel: (5, 5), activations: [GDN, PReLU]
SignalConv2D filter: 𝑛con, kernel: (5, 5)

Channel
Flatten output size: 64𝑛con
L2 Normalization scale factor:

√
64𝑛con

AWGN noise stddev:
√

10−SNR/10

Reshape output shape: (8, 8, 𝑛con)

Decoder
SignalConv2D filter: 16, kernel: (5, 5), activations: [IGDN, PReLU]
SignalConv2D filter: 16, kernel: (5, 5), activations: [IGDN, PReLU]
SignalConv2D filter: 16, kernel: (5, 5), activations: [IGDN, PReLU]
SignalConv2D filter: 16, kernel: (5, 5), activations: [IGDN, PReLU]
SignalConv2D filter: 3, kernel: (9, 9), activation: Sigmoid

functions sigmoid or rectified linear unit (ReLU). It is trained using the Adamax optimiser with
sparse categorical cross-entropy as the loss function. The final encoder layer has a depth parameter
𝑛𝑐𝑜𝑛, determining the overall bandwidth ratio across all layers as [180]:

𝑛𝑇

𝑘 𝑝
=

(
𝐼𝐻
4 × 𝐼𝑊

4 × 𝑛con

)
𝐼𝐻 × 𝐼𝑊 × 𝐼𝐶

=
𝑛con

16 × 𝐼𝐶
. (6.3)

Table 6.1 shows the detailed architecture of the proposed DJSCC model.

6.1.2.1 Estimating the AoMI

This section aims to estimate the AAoMI of the deep learning-based wireless communication
system. It is assumed that the average image generation rate at the transmitter is denoted by 𝜆𝐼 and
the wireless communication system transmits images at a rate of 𝜇. Furthermore, the probability
of correct image classification is considered as 0 ≤𝜌𝑎𝑐< 1. The average image transmission rate
𝜇 is inversely proportional to the mean transmission time per image, denoted by E[𝑇], within this
wireless network. This relationship is given by the following equation:

1
𝜇

= E[𝑇] = 𝑛𝑇𝑇𝑠, (6.4)

where 𝑇𝑠 represents the symbol duration and 𝑛𝑇 denotes the total number of symbol used for the
transmission by the transmitter. If the generation time stamp of the received image with the most
recently correctly classified image received at timestamp 𝑡 is represented by 𝑔(𝑡), then AoMI can
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be defined as a random process 𝑥0(𝑡) as

𝑥0(𝑡) = 𝑡 − 𝑔(𝑡). (6.5)

The illustration in Figure 6.2 assumes that AoMI measurements commence at 𝑡 = 0, with the initial

𝒏𝑻𝑻𝒔

𝒕

𝒙𝟎(𝒕)

𝑿𝟎

𝒄𝟏 𝒄𝟓𝒄𝟒𝒄𝟑𝒄𝟐 𝒘𝟓𝒘𝟏 𝒘𝟐 𝒘𝟑

𝒏𝑻𝑻𝒔

Figure 6.2: Evolution of AoMI 𝑥0(𝑡) with the time at the receiver: Source generate images at time
stamps 𝑐1, 𝑐2, .. and the receiver receive and classify these images at time stamps 𝑤1, 𝑤2, ....

AoI at the receiver set as 𝑥0(0) =𝑋0. The source generates images at timestamps {𝑐1, 𝑐2, . . .}, while
the receiver obtains these images at timestamps {𝑤1, 𝑤2, . . .}. As per Figure 6.2, for an image 𝑖
captured at 𝑡 =𝑐𝑖 , the receiver classifies it at 𝑤𝑖 = 𝑐𝑖 + 𝑛𝑇𝑇𝑠. If correctly classified at 𝑤𝑖 , the AoMI
at the receiver is estimated as:

𝑥(𝑤𝑖) = 𝑛𝑇𝑇𝑠 . (6.6)

The AoMI of the receiver grows linearly until a correct classification occurs. For instance, if
misclassified at 𝑤2, 𝑥0(𝑡) continues increasing linearly. Moreover, when transmitting an image,
newly generated images at the source are blocked and discarded. Specifically, if a new image
is captured at 𝑐4 while an earlier image from 𝑐3 is still being transmitted, the 𝑐4 image is not
transmitted and does not affect the AoMI process. To calculate the average AoMI over a period 𝑇𝑐,
the area under 𝑥0(𝑡) is utilised:

Δ𝑇𝑐 =
1
𝑇𝑐

∫𝑇𝑐
0
𝑥0(𝑡) 𝑑𝑡. (6.7)
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The time-averaged AoMI (Δ𝑇𝑐 ) converges to the ensemble average AoMI (Δ) as 𝑇𝑐 → ∞,
expressed as:

Δ = E[𝑥0] = lim
𝑡→∞

E[𝑥0(𝑡)] = lim
𝑇𝑐→∞

Δ𝑇𝑐 . (6.8)

This study employs SHS techniques to estimate E[𝑥0], representing the AoMI at the receiver.
Within the SHS framework, the AoMI process is modelled by combining continuous states x(𝑡) and
discrete states 𝑞(𝑡). These discrete states signify the wireless system’s transmission status, effectively
described by a Markov chain. The state space is defined as (𝑞(𝑡), x(𝑡)), where 𝑞(𝑡) ∈ Q = {0, 1};
𝑞 = 0 indicates an idle system, while 𝑞 = 1 signifies active transmission. The continuous vector
x(𝑡) = [𝑥1(𝑡), 𝑥0(𝑡)] evaluates the age process, where 𝑥0(𝑡) monitors the age for correctly classified
images and 𝑥1(𝑡) represents the projected 𝑥0(𝑡) value for accurate classification. The AoMI process
is visually represented as a graph (𝑞, L), with transmission states as nodes and transitions as
directed edges. The transition rate from node 𝑞𝑙 to 𝑞′

𝑙
is given by 𝜆(𝑙)𝛿𝑞𝑙 ,𝑞(𝑡) , where the Kronecker

delta 𝛿𝑞𝑙 ,𝑞(𝑡) ensures transitions occur only for state 𝑞𝑙. Each transition 𝑙 corresponds to a sudden
change in the continuous state, represented by a linear transition reset mapping:

x′ = xA𝑙, (6.9)

where A𝑙 ∈ {0, 1}(2)×(2) is a binary transition reset matrix. For this system, the interactions
between discrete states and their impact on continuous states are summarised in Table 6.2 through
linear mapping. The transactions described in Table 6.2 can be interpreted as follows: (1) When
the wireless system is idle, an image is generated by the source. The system starts transmitting
the captured image, but 𝑥′0 = 𝑥0 remains unchanged since image capture does not reduce the age
at the receiver until correct classification. However, 𝑥′1 = 0 since the age of the captured image
is initially zero. (2) When the receiver correctly classifies an image transmitted by the source,
𝑥′0 = 𝑥1, resetting the age at the receiver to the age of the transmitted image. Moreover, 𝑥′1 = 0
since 𝑥1 becomes irrelevant when the source system enters the idle state 0. (3) In the case of
the receiver misclassifying an image transmitted by the source, 𝑥′0 = 𝑥0 remains unchanged since
misclassification does not reduce the age at the receiver. Additionally, 𝑥′1 = 0 since 𝑥1 becomes
irrelevant when the system enters state 0. (4) If the source captures an image while another image is
being transmitted, the new image is discarded and transmission continues with the current image. In
this scenario, 𝑥′0 = 𝑥0 remains unchanged since this operation does not affect the age at the receiver.
Furthermore, 𝑥′1 = 𝑥1 is unaffected since the age of the transmitting image remains unchanged. The
growth rate of the continuous state at each discrete 𝑞(𝑡) = 𝑞, where 𝑞 ∈ Q, is given by:

¤x(𝑡) =
𝜕x(𝑡)
𝜕𝑡

= b𝑞, (6.10)

where b𝑞= [b𝑞,0, b𝑞,1] is a vector containing binary elements. When x 𝑗(𝑡) grows at a unit rate
as a normal age process in state 𝑞, b𝑞, 𝑗 = 1; and when it is irrelevant to the age process or not
tracked in state 𝑞, b𝑞, 𝑗 = 0. Hence, for this system, b𝑞 can be expressed as:
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b𝑞 =


[
1 0

]
, 𝑞 = 0,

[
1 1

]
, 𝑞 = 1.

(6.11)

Let 𝜋�̂�(𝑡) denote the discrete state probabilities for all 𝑞 ∈ Q and v𝑞(𝑡) denote the correlation
between the age process and the discrete state 𝑞(𝑡) = 𝑞. Accordingly, 𝜋𝑞(𝑡) = E[𝛿�̂�,𝑞(𝑡)] and the
correlation vector function v𝑞(𝑡) =

[
𝜐𝑞0(𝑡), 𝜐�̂�1(𝑡)

]
, where 𝜐�̂� 𝑗(𝑡) = E[𝑥 𝑗(𝑡)𝛿�̂�,𝑞(𝑡)], 𝑗 ∈ (0, 1).

All transitions L can be divided into incoming and outgoing transitions. For each state 𝑞, incoming
transitions are labelled as L′𝑞 = 𝑙 ∈ L : 𝑞′𝑙 = 𝑞 and outgoing transitions are labelled as L𝑞 =
𝑙 ∈ L : 𝑞𝑙 = 𝑞. To compute the time-averaged age, it is assumed that the Markov chain 𝑞(𝑡) is
ergodic. Hence, the state probability vector 𝜋(𝑡) = [𝜋0(𝑡), 𝜋1(𝑡)] converges to a unique stationary
vector �̄� = [�̄�0, �̄�1] satisfying the following:

�̄��̄�
∑︁
𝑙∈L�̄�

𝜆(𝑙) =
∑︁
𝑙∈L′

�̄�

𝜆(𝑙)�̄�𝑞𝑙 , 𝑞 ∈ Q, (6.12)∑̄︁
𝑞∈Q

�̄��̄� = 1. (6.13)

For this system, (6.12) has been used to find the stationary probabilities and it can be shown that
the stationary probability vector satisfies �̄�A = �̄�B, where:

A = diag
[
𝜆𝐼 𝜇 + 𝜆𝐼

]
, B =

[
0 𝜆𝐼

𝜇 𝜆𝐼

]
.

where diag(𝑥) represents a diagonal matrix, with each diagonal element being the corresponding
element in 𝑥 . Then, applying (6.13), the stationary probabilities �̄� can be calculated as

�̄� =
[
�̄�0 �̄�1

]
=

1
𝜆𝐼 + 𝜇

[
𝜇 𝜆𝐼

]
. (6.14)

When 𝜋(𝑡) = �̄� and v(𝑡) = [v0(𝑡), v1(𝑡)], the system follows first-order differential equations for all
𝑞 ∈ Q as

¤v�̄�(𝑡) = b�̄� �̄��̄� +
∑︁
𝑙∈L′

�̄�

𝜆(𝑙)v𝑞𝑙 (𝑡)A𝑙 − v�̄�(𝑡)
∑︁
𝑙∈L�̄�

𝜆(𝑙), (6.15)

Under the ergodicity assumption, this differential equation is stable and v�̄�(𝑡) = E[x(𝑡)𝛿�̄�,𝑞(𝑡)]
converges to a non-negative limit v̄�̄� as 𝑡 → ∞. Accordingly:

E[x] = lim
𝑡→∞

E[x(𝑡)] = lim
𝑡→∞

E[x(𝑡)𝛿�̄�,𝑞(𝑡)] =
∑̄︁
𝑞∈Q

v̄�̄�, (6.16)

v̄�̄�
∑︁
𝑙∈L�̄�

𝜆(𝑙) = b�̄� �̄��̄� +
∑︁
𝑙∈L′

�̄�

𝜆(𝑙)v̄𝑞𝑙A𝑙, 𝑞 ∈ Q, (6.17)

Here, 𝑥0(𝑡) is the age at the destination and the AAoMI Δ is calculated as:

Δ = E[𝑥0] = lim
𝑡→∞

E[𝑥0(𝑡)] =
∑̄︁
𝑞∈Q

�̄��̄�0. (6.18)
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Table 6.2: Transitions Rate for the Markov Chain in DJSCC-based Wireless Image Transmission
System

𝑙 𝑞𝑙 → 𝑞′
𝑙

𝜆 (𝑙) xA𝑙 v𝑞𝑙A𝑙
1 0 → 1 𝜆𝐼

[
𝑥0 0

] [
𝜐00 0

]
2 1 → 0 𝜇𝜌𝑎𝑐

[
𝑥1 0

] [
𝜐11 0

]
3 1 → 0 𝜇(1 − 𝜌𝑎𝑐)

[
𝑥0 0

] [
𝜐10 0

]
4 1 → 1 𝜆𝐼

[
𝑥0 𝑥1

] [
𝜐10 𝜐11

]
To estimate Δ using (6.18), it is necessary to find �̄��̄�0 from (6.17). First, a solution for

v̄ = [v̄0, v̄1] = [�̄�00, �̄�01, �̄�10, �̄�11] can be found using (6.17). Evaluating this equation at 𝑞 = 0 and
𝑞 = 1 and using Table 6.2, the following is obtained:

𝜆𝐼

[
�̄�00 �̄�01

]
=

[
�̄�0 0

]
+ 𝜇𝜌𝑎𝑐

[
�̄�11 0

]
+ 𝜇(1 − 𝜌𝑎𝑐)

[
�̄�10 0

]
(6.19)

(𝜇 + 𝜆𝐼 )
[
�̄�10 �̄�11

]
=

[
�̄�1 �̄�1

]
+ 𝜆𝐼

[
�̄�00 0

]
+ 𝜆𝐼

[
�̄�10 �̄�11

]
. (6.20)

Next, the aforementioned expressions can be expressed as system equations in the following
manner:

𝜆𝐼 �̄�00 = �̄�0 + 𝜇𝜌𝑎𝑐�̄�11 + 𝜇(1 − 𝜌𝑎𝑐)�̄�10, (6.21)

𝜇�̄�10 = �̄�1 + 𝜆𝐼 �̄�00, (6.22)

𝜇�̄�11 = �̄�1. (6.23)

By solving these equations and using (6.14), the values of �̄��̄�0 can be calculated. Then, by
substituting the result into (6.18), the AAoMI Δ at the destination can be obtained as follows:

Δ =
1

𝜆𝐼 𝜌𝑎𝑐
+

1
𝜇𝜌𝑎𝑐

+
𝜆𝐼

𝜇(𝜆𝐼 + 𝜇)
. (6.24)

Finally, the AAoMI of the wireless communication system is calculated using Algorithm 1.

6.1.3 Simulation Results

The DJSCC is evaluated using the CIFAR-10 [181] image dataset, which consists of 60,000 32x32
colour images, divided into 50,000 training images and 10,000 test images. The training data is
combined with random channel realisations to train the DJSCC model. The model is trained using
a fixed SNR and its performance is investigated over a range of SNR values and bandwidth ratios.
The proposed DJSCC is compared with a separate source and channel coding scheme that uses
the BPG compression algorithm for source coding and the LDPC code for channel coding as the
digital baseline. In this scheme, the source node compresses the image using BPG, which employs
advanced coding techniques such as intra-frame prediction and context-adaptive binary arithmetic
coding. The BPG encoder uses a quality parameter to control the trade-off between compression
ratio and image quality, determined by a rate-distortion optimisation algorithm. The compressed
bitstream is encoded using an LDPC code compliant with the 5G New Radio standard [182]. The
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Algorithm 1 Algorithm for Train DJSCC and Calculating AAoMI
Training Phase

1: Require:A batch of images 𝑰 for training from the CIFAR-10 [181] image dataset.
2: Ensure:Trained encoder 𝑓 (·, 𝝑) and classifier 𝑀(·, 𝝉).
3: Initialize: Initialise the weights of 𝑓 (·, 𝝑) and 𝑀(·, 𝝉) using a standard initialisation method.
4: for each epoch do

Transmitter:
5: Extract semantic features using 𝑓 (·, 𝝑).
6: Apply power normalisation as in (6.1).
7: Set the wireless channel average SNR as �̄�𝑡𝑟𝑎𝑖𝑛 and transmit the symbols through

wireless channels.
Receiver:

8: Perform reshaping on the received signal 𝒛.
9: Conduct image classification with 𝑀(�̂�, 𝜏).

10: end for
Deployment and AAoMI Calculation Phase

11: Require:A batch of images 𝑰test for testing from the CIFAR-10 image dataset.
12: Ensure:Calculate AAoMI.
13: Initialize: Image generation process parameters 𝜆𝐼 and image transmission rate 𝜇.

Transmitter:
14: Deploy the learned 𝑓 (·, 𝝑). Extract semantic features 𝑆.
15: Apply power normalisation as in (6.1).
16: Set the wireless channel parameters. Then, the symbols are transmitted through the wireless

channel.
Receiver:

17: Perform reshaping on the received signal 𝒛 and deploy the learned 𝑀(·, 𝝉).
18: Conduct image classification using 𝑀(�̂�, 𝜏).
19: Compute Classification Accuracy:
20: Compare the predicted class 𝐿 with the true class of 𝑰test.
21: Calculate the classification accuracy 𝜌𝑎𝑐.
22: Compute AAoMI:
23: Calculate AAoMI using

Δ =
1

𝜆𝐼 𝜌𝑎𝑐
+

1
𝜇𝜌𝑎𝑐

+
𝜆𝐼

𝜇(𝜆𝐼 + 𝜇)
.
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Table 6.3: Simulation Parameters for DJSCC-Based Wireless Network

Parameter Symbol Value
System Parameters
Symbol Duration 𝑇𝑠 20 µs
Number of Convolutional Filters 𝑛con 16
Bandwidth Ratio 𝑛𝑇/𝑘 𝑝 1/3
Image Generation to Transmission Rate 𝜆𝐼/𝜇 1
Training SNR 𝛾train 5 dB
LDPC Code Rate – 2/3 (3072, 4608)
Modulation Scheme – 4-QAM
Training Parameters
Optimizer – Adam
Learning Rate – 0.001
Loss Function – MSE
Batch Size – 128
Dataset Parameters
Dataset – CIFAR-10
Training Set Size – 50,000
Test Set Size – 10,000
Image Preprocessing – Normalization to [0,1]

LDPC encoder performs rate-matching, including puncturing and shortening, to achieve the desired
codeword length. At the receiver, the LDPC decoder employs the iterative belief propagation
decoding algorithm. The decoded bitstream is decompressed using the BPG decompression
algorithm to obtain the reconstructed image. In the traditional model, these reconstructed images
will be used for a classification task which is trained using the original images, compared to the
DJSCC approach. The flexibility and configurability of both the BPG compression algorithm and
the LDPC code and decoder provide a strong baseline for comparison with the DJSCC approach.
Unless otherwise specified, the simulation parameters and system configuration used in this study
are summarised in Table 6.3.

In Figure 6.3, the relationship between AAoMI and channel SNR for different bandwidth ratios
is illustrated. In these simulations, the DJSCC models were trained at a fixed SNR �̄�𝑡𝑟𝑎𝑖𝑛, after
which the AAoMI was evaluated across various channel SNRs. The AAoMI of the DJSCC-based
approach was compared with that of a digital baseline system whilst considering different bandwidth
ratios. The digital baseline system, consisting of LDPC + BPG, adapts its compression ratio based
on the specified code rate and overall bandwidth ratio. The LDPC code, corresponding to a 2/3
code rate and 4-Quadrature amplitude modulation were evaluated as the digital baseline. The
experimental results reveal that the DJSCC approach exhibits superior AoI performance compared
to the digital baseline transmission schemes in low channel bandwidth and low SNR scenarios.
Conversely, in high bandwidth ratios and high SNR environments, the traditional system performs
better. Importantly, the DJSCC approach does not suffer from the ’cliff effect’ commonly observed
in digital transmission schemes. This limitation of digital schemes stems from the fact that once
the channel code and modulation scheme are chosen for a specific target SNR, the number of bits
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Figure 6.3: AAoMI vs. channel SNR for different bandwidth ratios (BR).

available for compression remains constant. Consequently, the AAoMI does not improve even
when the SNR increases. In addition, when channel quality deteriorates below the target SNR,
the channel code struggles to handle the escalating error rate, resulting in a substantial increase in
AAoMI at very low SNR levels. On the other hand, for traditional systems, lower SNR and lower
bandwidth ratios lead to a higher AAoMI compared with the DJSCC system. This is due to the
reduction in image quality, caused by high compression levels at lower bandwidth ratios, reduces
classification accuracy, especially under lower SNR levels, as the traditional system classifies
images at the receiver using a model that is not trained to adapt to the reduction of image quality
due to noise or high compression levels. In addition, for both DJSCC-based systems and traditional
systems, when the bandwidth ratio is reduced, the AAoMI also reduces since the reduction in
transmission time becomes more prominent compared to the reduction in classification accuracy.
This adaptability and resilience exhibited by the DJSCC scheme make it an attractive solution
for efficient communication in low SNR channel environments, offering potential for improved
freshness performance and robustness compared to traditional approaches. Moreover, while the
AoI performance of the DJSCC system falls behind traditional schemes in high SNR conditions,
it is suggested that adopting a more complex neural network structure and leveraging advanced
activation and loss functions could lead to enhancements in the freshness capabilities of the DJSCC
model. Figure 6.4 presents the inverse relationship between the AAoMI and the image generation
rate (𝜆𝐼 ) in the evaluated wireless communication system. As the figure illustrates, there is a notable
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Figure 6.4: Comparison of AAoMI against image generation (capturing) rate (𝜆𝐼 ) for different
bandwidth ratios (BR).

decline in AAoMI with an upsurge in the image capture rate. This system is characterised by the
absence of a transmission queue, thus eliminating any queuing delay. The enhanced image capture
rate correlates with a more frequent update of images at the destination node. Thus, the decrease in
AAoMI can be directly attributed to the increase in temporal density of the image updates received
by the receiver, which emphasises the efficiency of the system in maintaining the freshness of the
information.

6.1.4 Conclusion

This section introduces a novel wireless communication system that employs DJSCC to minimise
the AoMI for image transmission. The proposed system leverages a DNN at the transmitter and a
classifier at the receiver to enable end-to-end optimisation of the age of information. By introducing
AoMI as a new metric, this work captures the freshness of correctly classified semantic information
-this is crucial for time-critical wireless applications that rely on timely delivery of information.
Simulations confirmed that the proposed DJSCC system significantly reduces the AoMI compared
to traditional schemes. These results underscore the capability of deep learning techniques to
enhance the timeliness of information delivery over wireless channels, especially in environments
characterised by limited bandwidth and low SNR.
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6.2 Sky Sentinels: UAV-Powered Semantics Wireless
Communications for Dynamic Wildfire Detection

6.2.1 Introduction

This section introduces a technique for wildfire detection by integrating UAVs with the DJSCC
scheme. This extracts semantic information efficiently from the data while subsequently transmitting
it using a reduced number of symbols to maintain freshness. The primary objective is to enhance the
accuracy and efficiency of wildfire detection while ensuring the freshness of transmitted information.
The system serves a dual purpose by facilitating both image reconstruction and wildfire image
classification. To quantify the freshness of information at the receiver, a new performance metric
called the AoMI is introduced. This deploys the concept of AoI in image classification systems. The
AAoMI is estimated using the SHS model. Furthermore, an expression is derived for the AAoMI of
the UAV wireless communication system. This facilitates the estimation of ideal system parameters
such as UAV altitude, transmission power, image generation rate and bandwidth ratio to maintain
optimal freshness of the information. In particular, this work is one of the first comprehensive
analyses of information freshness in a DJSCC-based wireless communications system.

In recent years, the frequency, size and severity of wildfires worldwide have seen a significant
increase, impacting economies, ecosystems and local communities [183, 184]. Approximately 23
million acres of land are lost due to wildfires annually around the world and experts predict a further
rise in fire risks in the near future [185]. Effectively managing wildfires poses a considerable
challenge, with early detection being crucial [186]. However, current methods, such as satellite
imagery and infrared cameras, have limitations, especially in adverse weather conditions such
as cloudy environments. Thus, to address the uncontrolled spread of wildfires, the use of IoT
networks has emerged as a promising solution [187]. These networks can connect various cost-
effective self-powered IoT sensors known for their simplicity. Projections suggest that by the
end of 2023, IoT networks could support up to 100,000 IoT devices per square kilometre [188].
However, shortcomings in infrastructure in forested areas and inherent limitations of IoT devices
include power and computational constraints. Thus, the traditional IoT networks are unsuitable for
efficient data gathering. To overcome this, UAVs are a viable option [17, 189, 190]. UAVs offer
advantages such as flexibility and reduced costs, making them well suited for reaching dangerous and
remote disaster-stricken areas [191]. Recent studies propose the use of UAV-added communication
networks in managing natural disasters such as wildfires [192].

This section presents an innovative approach to identifying wildfires using UAVs along with a
deep learning-based semantic wireless communications system. The main objective of this study
is to evaluate how to maintain the freshness of the information in a UAV-assisted semantic wireless
communication network for wildfire detection. This enhancement aims to enable the rapid and
accurate identification of wildfires.
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6.2.1.1 Contributions

Significant theoretical research work has been dedicated to DJSCC and semantic communica-
tion. However, its practical implementation in UAV-based wireless communication has received
limited attention. Furthermore, there is a notable gap in understanding how semantic wireless
communication schemes contribute to reducing AoI while preserving the freshness of information.

This section presents pioneering work in applying AoI metrics to a DJSCC-based semantic
communication system used for UAV-assisted communication systems. The primary contribution of
this work lies in the introduction of context-based AoI metrics for UAV communication, specifically
designed for wireless end-to-end image classification systems, denoted as AoMI. This metric
extends beyond wildfire detection and can be adapted for a broader range of classification systems.
Notably, to the best of the author’s knowledge, no prior study has focused on a semantic wireless
communication-based wildfire detection system using UAV communication, making this study one
of the first in this domain.

The study proposes a DJSCC framework that includes an encoder, decoder and classifier,
enabling seamless end-to-end training for image classification in the context of wildfire detection.
The wireless communication channel is modeled as a Rician fading channel, effectively simulating
the communication conditions in a UAV network. In addition, the receiver decoder plays a crucial
role in image recovery, ensuring an accurate assessment of the scale of wildfires in critical scenarios.

One of the key outcomes of this study is the development of an expression for AAoMI using the
SHS approach in a UAV-assisted semantic classification system. This expression can be utilised
to determine the optimal altitude, block length and update generation rate needed to uphold the
freshness of received information at the destination, thereby pushing forward the state-of-the-art in
this emerging field.

The rest of this section is organised as follows: Sub-section 6.2.2 introduces the system model
and presents the proposed workflow algorithm and AAoMI estimation algorithm for a semantic
communication system. Sub-section 6.2.3 provides simulation results to evaluate the performance
of the proposed system. Finally, the section is concluded in sub-section 6.2.4.

6.2.2 System Model

Figure 6.5 examines a wildfire detection system utilising a UAV. The UAV (𝑈) is positioned at an
altitude 𝐻 and equipped with cameras for image capture. The UAV and GCS (𝐺𝑐) have coordinates
𝐷𝑈= (𝑋𝑈;𝑌𝑈;𝐻) and 𝐷𝐺𝑐= (𝑋𝐺𝑐 ;𝑌𝐺𝑐 ; 0), respectively. The horizontal distance is 𝑑𝑈,𝐺𝑐 =√︁

(𝑋𝑈 − 𝑋𝐺𝑐 )2 + (𝑌𝑈 − 𝑌𝐺𝑐 )2. The angle of elevation is 𝜃= arctan
(

𝐻
𝑑𝑈,𝐺𝑐

)
. Communication

involves LoS and NLoS channels between UAV and GCS.

This study introduces a wireless communication system arrangement consisting of transmitter,
channel and receiver components, as shown in Figure 6.6. It is assumed that the UAV image-capture
process adheres to a Poisson point process, thus introducing a stochastic and random nature to
the image-capturing process. The transmitter employs the DJSCC technique for wireless image
transmission. In contrast to traditional methods that rely on separate source coding and channel
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Figure 6.5: Illustration of the UAV-based wildfire detection system. The UAV is positioned at
altitude 𝐻 and equipped with cameras for image capture.

coding, DJSCC takes a more direct approach by mapping image pixel values onto complex-valued
channel input symbols. This eliminates the necessity for distinct coding mechanisms [145, 146].

These complex-valued channel input symbols are subsequently transmitted through a wireless
communication channel between the UAV and GCS. Channel characteristics are modeled using
the Rician fading model, which effectively captures small-scale fading in UAV-assisted wireless
channels. In addition, one of the key aspects of this system model is the joint training of both
the transmitter and receiver. This collaborative training strategy enables adaptation to changing
channel conditions, ensuring robust image transmission despite the inherently dynamic nature of
the channel.

In the considered system, the receiver fulfils both classification and image reconstruction tasks,
utilising the channel output in accordance with the GCS requirements. The input image is denoted
as 𝑰∈ R𝐼𝐻×𝐼𝑊×𝐼𝐶 , where 𝐼𝐻 , 𝐼𝑊 and 𝐼𝐶 represent the height, width and number of colour channels,
respectively. The total number of pixels in the image is denoted as 𝑘𝑃 = 𝐼𝐻 × 𝐼𝑊 × 𝐼𝐶 , which
is referred to as the source bandwidth. The wireless transmission of the image source is then
considered. The transmitter employs a DNN encoded by the DJSCC encoder, denoted as 𝑓 (·, 𝝑),
where 𝝑 represents the learnable parameters of the network. Given an input source signal 𝑰, the
output encoded semantic features 𝑆 produced by 𝑓 (·, 𝝑) are expressed as 𝒔 = 𝑓 (𝑰, 𝜗) and 𝑆 belongs
to the real vector space R2𝑛𝑇 , where 𝑛𝑇 is the channel bandwidth. The ratio "𝑛𝑇/𝑘𝑃" is called
the bandwidth ratio [180]. Then, encoded semantic features 𝑆 are reshaped into complex-valued
symbols 𝑛𝑇 to form the encoded signal 𝒔. After encoding the semantic signal 𝑆 from the images
received from the UAV 𝑰, a normalization process is applied to ensure that𝒔 adheres to the average
power constraint as
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Figure 6.6: Proposed DJSCC-based communication system. The transmitter sends images captured
by a UAV, assuming a Poisson point process for image capture. DJSCC technique is used for
wireless image transmission. The Rician fading model is used to characterise the wireless channel.
The receiver processes channel output for classification and image reconstruction tasks.

1
𝑛𝑇

E∥𝒔∥2≤ 𝑃, (6.25)

where 𝑃 denotes the transmission power of the UAV. Subsequently, the encoded signal denoted𝒔
is transmitted through the wireless channel between the UAV and the GCS. In the context of
this wireless communication system, the wireless channel is characterized as a frequency-flat
block fading channel. It is assumed that the channel’s characteristics remain stable throughout
the transmission of a single symbol however may independently vary when subsequent symbols
are transmitted. Consequently, the received signal, represented as 𝒛 ∈ C𝑛𝑇 , can be expressed as
follows:

𝒛 =
√
𝐺𝑃ŝ + 𝑾𝒏, (6.26)

where 𝑾𝒏 ∼ CN (0, 𝜎2𝑰𝒏) represents independent and identically distributed (i.i.d.) circularly
symmetric complex Gaussian noise with an average noise power of 𝜎2, where 𝑰𝒏 stands for an
identity matrix and CN represents complex normal (Gaussian) distribution. The parameter 𝐺 is
the channel gain. In this UAV communication configuration, the channel gain 𝐺 is considered
the product of the large-scale channel gain and the small-scale channel gain. Both the small-scale
and large-scale channel gains are influenced by both LoS and NLoS channels. Consequently, it
is essential to compute the LoS probability between the transmitter and the receiver. The LoS
probability between the UAV and GCS, 𝑃𝐿𝑜𝑆 can be expressed as in [157],

𝑃LoS(𝜃) =
1

1 + 𝐴𝑠 exp (−𝐵𝑠(𝜃 − 𝐴𝑠))
, (6.27)
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where 𝐴𝑠 and 𝐵𝑠 are parameters characterizing the S-curve and are environment-dependent. The
large-scale channel gain 𝛼 for the channel between the UAV and GCS is determined as follows
[193]:

−10 log𝛼 = 20 log (𝐻 csc 𝜃) + 20 log
(
4𝜋 𝑓𝑐
𝑐

)
+ 𝜂NLOS +

𝜂LOS − 𝜂NLOS

1 + 𝐴𝑠 exp (−𝐵𝑠(𝜃 − 𝐴𝑠))
, (6.28)

where 𝑓𝑐 and 𝑐 are the carrier frequency (Hz) and the speed of light (m/s), respectively.
glsetalos and 𝜂𝑁𝐿𝑜𝑆 represent the expectations of additional environmental-dependent excess path
loss for the LoS and NLoS components, respectively. Assuming that the UAV and GCS remain
static during the transmission of a block and ignoring the Doppler effect, the Rician fading model
is employed to investigate the small-scale channel characteristics and multi-path propagation in
this system. The probability distribution of the small-scale channel gain 𝑔 follows a non-central
chi-square distribution and the PDF for the small-scale channel gain can be expressed as:

𝑓𝑔(𝑧) =
(𝐾 𝑓 + 1)𝑒−𝐾 𝑓

�̄�
𝑒

−(𝐾 𝑓 +1)𝑧
�̄� 𝐼0

©«2

√︄
𝐾 𝑓 (𝐾 𝑓 + 1)𝑧

�̄�

ª®¬ , (6.29)

where 𝑧 ≥ 0, �̄� = 1, 𝐼0 (·) is the zero-order modified Bessel function of the first kind and 𝐾 𝑓 is the
Rician factor, which can be expressed as follows [159]:

𝐾 𝑓 =
𝑃LoS(𝜃)

1 − 𝑃LoS(𝜃)
=

1
𝐴𝑠 exp(−𝐵𝑠(𝜃 − 𝐴𝑠))

. (6.30)

Then, the channel gain and average SNR at the receiver can be calculated as 𝐺 = 𝛼𝑔 and �̄� = 𝛼𝑃

𝜎2

respectively. Additionally, receiver processing has been incorporated to facilitate image recovery
and execution of classification tasks, thereby enabling the detection of wildfire occurrence. Then,
at the receiver end, the real and imaginary components of 𝒛 are reshaped to form �̂� ∈ R2𝑏 for further
processing. Following this step, the receiver performs data recovery and classification tasks based
on �̂�. One approach the receiver takes is to conduct the classification task directly within the feature
space. This involves feeding the derived features �̂� into a classifier 𝑀(·, 𝝉), where 𝝉 represents the
learnable parameters of the network. The classifier produces the classification outcome denoted as
𝐿 = 𝑀(�̂�, 𝜏).

Alternatively, the decoder at the receiver maps the acquired�̂� to an estimated reconstruction of
the original transmitted image, denoted as �̂�∈ R𝑘𝑝 . This decoding process involves a neural network
represented as 𝑞(·, 𝜏), which is parameterized by 𝜏. The image reconstruction is achieved through
the function �̂� = 𝑞(�̄�, 𝜏). Our objective is to extract and transmit pertinent semantic information 𝒔

from the original image 𝑰, with the aim of minimising communication overhead, quantified in terms
of the number of symbols 𝑛𝑇 that need to be transmitted. This goal is pursued while ensuring the
effectiveness of image recovery and classification tasks, specifically for the detection of wildfires.
To assess the performance of the image recovery task, the peak signal-to-noise ratio (PSNR) is
used, which quantitatively measures the similarity between two images. The PSNR is calculated
as follows for an original image 𝑰 and its corresponding reconstructed image at the receiver end �̂�:

PSNR(𝑰, �̂�) = 10 · log10

(
MAX2

1
𝑘𝑃

| |𝑰 − �̂� | |2

)
(6.31)
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Figure 6.7: Encoder and decoder architecture with CNN layers, GDN/IGDN normalization and
PReLU/Sigmoid activations. The classifier employs Dense Layers with Sigmd/ReLU for wildfire
classification.

where 𝑀𝐴𝑋 denotes the maximum potential value of the image pixels and 𝑘𝑃 is a constant. The
performance of the image classification task is assessed through the classification accuracy.

The specific architecture of each component in the transmitter and the receiver is illustrated in
Figure 6.7. Both the encoder and decoder are composed of CNN layers. These convolution layers
are followed by normalization achieved through the use of GND or inverse inverse generalized
divisive normalization (IGDN) transformations. After normalisation, a PReLU activation function
is applied, except for the final blocks of the decoder, where a sigmoid activation function is used.

The rationale behind this chosen architecture is as follows: convolutional layers are adept at
extracting crucial features from the image. The application of GND facilitates local divisive nor-
malization, a technique demonstrated to be effective for density modelling and image compression
[194]. Simultaneously, the non-linear activations permit the learning of intricate mappings from the
source signal space to the channel input space and vice versa. The classifier model employs dense
layers with appropriate activation functions, such as sigmoid or rectified linear unit, to discern
between instances of fire and non-fire. During the training process of both the encoder and decoder,
the model employs the Adam optimiser with the objective of minimizing the mean squared error
between the reconstructed image and the initial input image. Conversely, the classifier is trained
using the Adam optimiser in conjunction with sparse categorical cross-entropy as the loss function.
In addition, the final layer of the encoder is characterised by its depth parameter, denoted as 𝑛𝑐𝑜𝑛,
determining the aggregate bandwidth ratio across all layers as follows:

𝑛𝑇

𝑘 𝑝
=

(
𝐼𝐻
4 × 𝐼𝑊

4 × 𝑛𝑐𝑜𝑛
)

𝐼𝐻 × 𝐼𝑊 × 𝐼𝐶
=

𝑛con

16 × 𝐼𝐶
. (6.32)
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6.2.2.1 Estimating the AoMI

This section aims to estimate the AAoMI of the deep learning-based UAV-assisted wildfire detection
system. It is assumed that the average image capture rate at the UAV is denoted by 𝜆𝐼 and the
UAV-based wireless communication system transmits images at a rate of 𝜇. Furthermore, the
probability of correct image classification is considered as 0 ≤ 𝜌𝑎𝑐 < 1.

The average image transmission rate 𝜇 is inversely proportional to the mean transmission
time per image, denoted by E[𝑇], within this wireless network. This relationship is given by the
following equation:

1
𝜇

= E[𝑇] = 𝑛𝑇𝑇𝑠 (6.33)

where 𝑇𝑠 represents the symbol duration and 𝑛𝑇 denotes the total number of symbol used for
the transmission by the transmitter at the UAV. If the capturing time stamp of the most recently
correctly classified image received at timestamp 𝑡 is represented by 𝑔(𝑡), then AoMI can be defined
as a random process as

𝑥0(𝑡) = 𝑡 − 𝑔(𝑡). (6.34)

𝒏𝑻𝑻𝒔

𝒕

𝒙𝟎(𝒕)

𝑿𝟎

𝒄𝟏 𝒄𝟓𝒄𝟒𝒄𝟑𝒄𝟐 𝒘𝟓𝒘𝟏 𝒘𝟐 𝒘𝟑

𝒏𝑻𝑻𝒔

Figure 6.8: Evolution of AoMI 𝑥0(𝑡) with the time at the GCS: UAV capture images at time stamps
𝑐1, 𝑐2, .. and the GCS receive and classify these images at time stamps 𝑤1, 𝑤2, ....

As illustrated in Figure 6.8, it is assumed that at 𝑡 = 0 the measurements of the AoMI begin
and the AoI at 𝐺𝑐 is set to 𝑥0(0) = 𝑋0. The UAV captures images on time stamps 𝑐1, 𝑐2, . . . and
the 𝐺𝑐 receives these images on time stamps 𝑤1, 𝑤2, . . .. As shown in Figure 6.8, the captured
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image 𝑖 is transmitted from the UAV at timestamp 𝑡 = 𝑐𝑖 and is classified by the 𝐺𝑐 at time stamp
𝑤𝑖 = 𝑐𝑖 + 𝑛𝑇𝑠. Therefore, if the image is classified correctly at time 𝑤𝑖, the AoMI at 𝐺𝑐 can be
estimated as

𝑥(𝑤𝑖) = 𝑛𝑇𝑇𝑠 . (6.35)

AoMI at 𝐺𝑐 increases linearly until it classifies an image correctly. For example, if one image
received by the 𝐺𝑐 is misclassified at time 𝑤2, then 𝑥0(𝑡) continues to increase linearly. Similarly,
when an image is in transmission, new images captured on the UAV are blocked and cleared. For
instance, an image generated at the time 𝑐4 is not transmitted since at that time the previous image
captured at the time 𝑐3 is still under transmission. Hence, the image captured at the time 𝑐4 does
not affect the AoMI process. For the time period considered 𝑇𝑐, the average AoMI time can be
calculated using the area under 𝑥0(𝑡). Similarly, the time average AoMI of the proposed wildfire
detection system can be estimated as

Δ𝑇𝑐 =
1
𝑇𝑐

∫𝑇𝑐
0
𝑥0(𝑡) 𝑑𝑡. (6.36)

Then, the time average AoMI Δ𝑇𝑐 tends to the ensemble average AoMI when 𝑇𝑐 → ∞, i.e., which
can be expressed as

Δ = E[𝑥0] = lim
𝑡→∞

E[𝑥0(𝑡)] = lim
𝑇𝑐→∞

Δ𝑇𝑐 . (6.37)

In this study, SHS techniques are employed to estimate E [𝑥0], which represents the AoMI at
the 𝐺𝑐. Within the SHS framework, the AoMI process is modelled by combining continuous
states x (𝑡) and discrete states 𝑞 (𝑡). These discrete states signify the transmission status of
the wireless communication system in the UAV-based wildfire detection system, which can be
effectively described using a Markov chain. The state space of this Markov chain is defined as
(𝑞 (𝑡) , x (𝑡)), where 𝑞 (𝑡) ∈ Q = {0, 1}; where 𝑞 = 0 indicates an idle wireless communication
system, while 𝑞 = 1 signifies an active transmission state. The evaluation of the age process in 𝐺𝑐
is represented by the continuous vector x (𝑡) = [𝑥1 (𝑡) , 𝑥0 (𝑡)], where 𝑥0 (𝑡) monitors the age in
𝐺𝑐 corresponding to correctly classified images and 𝑥1 (𝑡) represents the projected value of 𝑥0 (𝑡)
in accurate image classification. The AoMI process at 𝐺𝑐, under the SHS framework, is visually
depicted by a graph (Q,L). This graphical representation incorporates transmission states of the
wireless communication system as nodes and the transitions between these states are illustrated
as directed edges. The transition rate from node 𝑞𝑙 to 𝑞𝑙 ′ is indicated by 𝜆 (𝑙)𝛿𝑞𝑙 ,𝑞(𝑡 ) , where the
Kronecker delta function 𝛿�̂�,𝑞(𝑡) ensures that transitions occur only for the state 𝑞𝑙 . Each transition
𝑙 typically corresponds to a sudden change in the continuous state, which can be represented using
a linear transition reset mapping:

x′ = xA𝑙, (6.38)

where A𝑙∈ {0, 1} (2)×(2) is a binary transition reset map matrix. For this system, the interactions
between discrete states and their impact on continuous states are summarised in Table 6.4 through
linear mapping. Additionally, the transactions described in Table 6.4 can be interpreted as follows:

• 𝑙 = 1: An image captured by the UAV when the wireless communication system is in an
idle state. With the capture of the image, the wireless communication system in the UAV
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starts transmission of the captured image and 𝑥′0 = 𝑥0 remains unchanged since capturing an
image by the UAV does not reduce the age at the 𝐺𝑐 until it is correctly classified by the 𝐺𝑐.
However, 𝑥′1 = 0 since the captured image is fresh and its age is zero at the instant.

• 𝑙 = 2: An image transmitted by the UAV correctly classified by the 𝐺𝑐. In this situation,
𝑥′0 = 𝑥1, corresponding to the age at the 𝐺𝑐 being reset to the age of the image that just
completed transmission. Moreover, 𝑥′1 = 0 since 𝑥1 becomes irrelevant when the wireless
communication system of the UAV enters state 0.

• 𝑙 = 3: An image transmitted by the UAV misclassified by the 𝐺𝑐. In this situation, 𝑥′0 = 𝑥0

remains unchanged since misclassification does not lead to an age reduction in𝐺𝑐. Moreover,
𝑥′1 = 0 since 𝑥1 becomes irrelevant when the wireless communication system enters the state
0.

• 𝑙 = 4: A UAV captured an image while another image was being transmitted. Consequently,
the new image will be discarded and the transmission will continue with the current image.
In this scenario, 𝑥′0 = 𝑥0 remains unchanged since this operation does not result in an age
reduction at the 𝐺𝑐. Furthermore, 𝑥′1 = 𝑥1 remains unaffected since the age of the current
transmitting image will also remain unchanged.

The growth rate of the continuous state at each discrete 𝑞(𝑡) = 𝑞 where 𝑞 ∈ Q is given by:

¤x(𝑡) =
𝜕x(𝑡)
𝜕𝑡

= b𝑞, (6.39)

where b𝑞 = [b𝑞,0, b𝑞,1] is a vector containing only binary elements. When x 𝑗(𝑡), 𝑗 ∈ 1, 0 grows at
a unit rate as a normal age process in state 𝑞, b𝑞, 𝑗 = 1; and when it is irrelevant to the age process
or does not need to be tracked in state 𝑞, b𝑞, 𝑗 = 0. Hence, for this system, b𝑞 can be expressed as
follows:

b𝑞 =


[
1 0

]
, 𝑞 = 0,

[
1 1

]
, 𝑞 = 1.

(6.40)

Let 𝜋�̂�(𝑡) denote the discrete state probabilities for all 𝑞 ∈ Q and v�̂�(𝑡) denote the correlation
between the age process and the discrete state of the system 𝑞(𝑡) = 𝑞. Accordingly, the following is
obtained:

𝜋�̂�(𝑡) = E[𝛿�̂�,𝑞(𝑡)], (6.41)

and the correlation vector function:

v�̂�(𝑡) =
[
𝜐�̂�0(𝑡), 𝜐�̂�1(𝑡)

]
, (6.42)

where:

𝜐�̂� 𝑗(𝑡) = E[𝑥 𝑗(𝑡)𝛿�̂�,𝑞(𝑡)], 𝑗 ∈ (0, 1). (6.43)

99



CHAPTER 6. AGE OF INFORMATION IN SEMANTIC COMMUNICATIONS

All transactions L can be divided into two categories: incoming transitions and outbound transitions.
For each state 𝑞, all incoming transitions are labelled as:

L′
𝑞 = {𝑙 ∈ L : 𝑞′𝑙 = 𝑞}, (6.44)

and all outgoing transitions are labelled as:

L𝑞 = {𝑙 ∈ L : 𝑞𝑙 = 𝑞}. (6.45)

To compute the time-averaged age, it is assumed that the Markov chain 𝑞(𝑡) is ergodic. Hence,
the state probability vector 𝜋(𝑡) = [𝜋0(𝑡), 𝜋1(𝑡)] always converges to a unique stationary vector
�̄� = [�̄�0, �̄�1] satisfying:

�̄��̄�
∑︁
𝑙∈L�̄�

𝜆(𝑙) =
∑︁
𝑙∈L′

�̄�

𝜆(𝑙)�̄�𝑞𝑙 , 𝑞 ∈ Q, (6.46)∑̄︁
𝑞∈Q

�̄��̄� = 1. (6.47)

For this system, (6.46) has been employed to find stationary probabilities and it can be shown that
the stationary probability vector satisfies �̄�A = �̄�B, with:

A = diag
[
𝜆𝐼 𝜇 + 𝜆𝐼

]
, B =

[
0 𝜆𝐼

𝜇 𝜆𝐼

]
.

Applying (6.47), the stationary probabilities �̄� can be calculated as:

�̄� =
[
�̄�0 �̄�1

]
=

1
𝜆𝐼 + 𝜇

[
𝜇 𝜆𝐼

]
. (6.48)

As shown in [55], when 𝜋(𝑡) = �̄�, v(𝑡) = [v0(𝑡), v1(𝑡)], the system follows first-order differential
equations for all 𝑞 ∈ Q:

¤v�̄�(𝑡) = b�̄� �̄��̄� +
∑︁
𝑙∈L′

�̄�

𝜆(𝑙)v𝑞𝑙 (𝑡)A𝑙 − v�̄�(𝑡)
∑︁
𝑙∈L�̄�

𝜆(𝑙), (6.49)

Under the ergodicity assumption, the differential equation (6.49) is stable and each v�̄�(𝑡) =
E[x(𝑡)𝛿�̄�,𝑞(𝑡)] converges to a non-negative limit v̄q̄ as 𝑡 → ∞. Accordingly, the following is
obtained:

E[x] = lim
𝑡→∞

E[x(𝑡)] = lim
𝑡→∞

E[x(𝑡)𝛿�̄�,𝑞(𝑡)] =
∑̄︁
𝑞∈Q

v̄q̄, (6.50)

v̄�̄�
∑︁
𝑙∈L�̄�

𝜆(𝑙) = b�̄� �̄��̄� +
∑︁
𝑙∈L′

�̄�

𝜆(𝑙)v̄𝑞𝑙A𝑙, 𝑞 ∈ Q, (6.51)

where 𝑥0(𝑡) is the age at the destination and AAoMI at the destination is calculated as follows [61]:

Δ = E[𝑥0] = lim
𝑡→∞

E[𝑥0(𝑡)] =
∑̄︁
𝑞∈Q

�̄��̄�0. (6.52)

To estimate AAoMI using (6.52), it is necessary to find �̄��̄�0 using (6.51). First, a solution can be
found for v̄ =

[
v̄0 v̄1

]
=

[
�̄�00 �̄�01 �̄�10 �̄�11

]
using (6.51). Hence, evaluating (6.51) at 𝑞 = 0

and 𝑞 = 1 and using Table 6.4, the following is obtained:

𝜆𝐼

[
�̄�00 �̄�01

]
=

[
�̄�0 0

]
+ 𝜇𝜌𝑎𝑐

[
�̄�11 0

]
+ 𝜇(1 − 𝜌𝑎𝑐)

[
�̄�10 0

]
, (6.53)

100



6.2. SKY SENTINELS: UAV-POWERED SEMANTICS WIRELESS
COMMUNICATIONS FOR DYNAMIC WILDFIRE DETECTION

Table 6.4: Transitions Rate for the Markov Chain in UAV-Assisted Wildfire Detection System

𝑙 𝑞𝑙 → 𝑞′
𝑙

𝜆 (𝑙) xA𝑙 v𝑞𝑙A𝑙
1 0 → 1 𝜆𝐼

[
𝑥0 0

] [
𝜐00 0

]
2 1 → 0 𝜇𝜌𝑎𝑐

[
𝑥1 0

] [
𝜐11 0

]
3 1 → 0 𝜇(1 − 𝜌𝑎𝑐)

[
𝑥0 0

] [
𝜐10 0

]
4 1 → 1 𝜆𝐼

[
𝑥0 𝑥1

] [
𝜐10 𝜐11

]
(𝜇 + 𝜆𝐼 )

[
�̄�10 �̄�11

]
=

[
�̄�1 �̄�1

]
+ 𝜆𝐼

[
�̄�00 0

]
+ 𝜆𝐼

[
�̄�10 �̄�11

]
. (6.54)

Then, the above expressions can be written as the following system of equations:

𝜆𝐼 �̄�00 = �̄�0 + 𝜇𝜌𝑎𝑐�̄�11 + 𝜇(1 − 𝜌𝑎𝑐)�̄�10, (6.55)

𝜇�̄�10 = �̄�1 + 𝜆𝐼 �̄�00, (6.56)

𝜇�̄�11 = �̄�1. (6.57)

By solving these equations and using (6.48), the values of �̄��̄�0 can be calculated. Finally, by
substituting the result into (6.52), the AAoMI Δ at the 𝐺𝑐 can be obtained as follows:

Δ =
1

𝜆𝐼 𝜌𝑎𝑐
+

1
𝜇𝜌𝑎𝑐

+
𝜆𝐼

𝜇(𝜆𝐼 + 𝜇)
. (6.58)

Finally, the AAoMI Δ of the wildfire detection system is calculated using Algorithm 2.

6.2.3 Simulation Results

In this section, the simulation results are presented to validate the functionality of the system
model in terms of image recovery and classification for the detection of wildfires. Specifically,
experiments are conducted using a wildfire detection image dataset [195]. This dataset comprises
colourful images with dimensions of 250 × 250 × 3 pixels, depicting various real-world wildfire
scenarios as well as non-fire scenarios in forest environments. Unless mentioned, the simulation
parameters are listed in Table 6.5.

Figure 6.9 depicts the relationship between average SNR (�̄�) and UAV altitude for varying
levels of transmission power and distances. The findings suggest that the most favourable altitude
for achieving the highest average SNR is approximately 300 m. The SNR remains lower at lower
altitudes due to a weak LoS signal. As the altitude approaches the optimal value, the average
SNR experiences rapid improvement owing to a more robust LoS component, which outweighs the
effects of signal attenuation due to the increase in distance between the transmitter and the receiver.
However, exceeding this optimal altitude leads to a path loss effect dominant over the effect of the
LoS, ultimately resulting in a decrease in the average SNR. Furthermore, reducing the distance
and increasing transmission power substantially elevates the average SNR level, as depicted in the
graph. In addition, it is noticed that the effect of the transmission power plays a major role in the
average SNR level for high altitude compared to the distance between the transmitter and receiver.

Figure 6.10 illustrates the relationship between the average SNR, denoted as �̄� and the distance
between the transmitter and receiver. The figure presents two scenarios: one with UAV support for
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Algorithm 2 Algorithm for Training DJSCC and Calculating AAoMI in UAV-Assisted Wildfire
Detection

Training Phase
1: Require:A batch of images 𝑰 for training from the wildfire detection image dataset [195].
2: Ensure:Trained encoder 𝑓 (·, 𝝑) and classifier 𝑀(·, 𝝉).
3: Initialize: Initialise the weights of 𝑓 (·, 𝝑) and 𝑀(·, 𝝉) using a standard initialisation method.
4: for each epoch do

Transmitter:
5: Extract semantic features using 𝑓 (·, 𝝑).
6: Apply power normalisation as in (6.25).
7: Set the wireless channel average SNR as �̄�train and transmit the symbols through wireless

channels.
Receiver:

8: Perform reshaping on the received signal 𝒛.
9: Conduct image classification with 𝑀(�̂�, 𝜏).

10: end for
Deployment and AAoMI Calculation Phase

11: Require:A batch of images 𝑰test for testing from the wildfire detection image dataset [195].
12: Ensure:Calculate AAoMI.
13: Initialise: Image generation process parameters 𝜆𝐼 and image transmission rate 𝜇.

Transmitter:
14: Deploy the learned 𝑓 (·, 𝝑). Extract semantic features 𝑆.
15: Apply power normalisation as in (6.25).
16: Set the wireless channel parameter of UAV communication channel following (6.28), (6.29)

and (6.30). Then, the symbols are transmitted through the wireless channel.
Receiver:

17: Perform reshaping on the received signal 𝒛 and deploy the learned 𝑀(·, 𝝉).
18: Conduct image classification using 𝑀(�̂�, 𝜏).
19: Compute Classification Accuracy:
20: Compare the predicted class 𝐿 with the true class of 𝑰test.
21: Calculate the classification accuracy 𝜌𝑎𝑐.
22: Compute AAoMI:
23: Calculate AAoMI using

Δ =
1

𝜆𝐼 𝜌𝑎𝑐
+

1
𝜇𝜌𝑎𝑐

+
𝜆𝐼

𝜇(𝜆𝐼 + 𝜇)
.
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Table 6.5: Simulation Parameters for UAV-Assisted Semantic Wireless Communication System in
Wildfire Detection [159].

Parameter Value
Distance between UAV and GCS (𝑑𝑈𝐺) 1500 m

UAV altitude (𝑑𝑈𝐺) 150 m
Carrier frequency ( 𝑓𝑐) 2.4 GHz

Speed of the light (m/s) (𝑐) 3 × 108ms−1

Transmission power at UAV(𝑃) 30 dBm
𝜂𝐿𝑜𝑆 0.1 dB
𝜂𝑁𝐿𝑜𝑆 21 dB

Symbol duration (𝑇𝑠) 20 µs
𝑛𝑐𝑜𝑛 16

Bandwidth ratio 𝑛𝑇/𝑘 𝑝 1/3
Noise power (𝜎2 ) -100 dBm

S-curve parameter A 4.87
S-curve parameters B 0.429

Image generation rate 𝜆𝐼 3 images s−1
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Figure 6.9: Average SNR vs. UAV altitude for different transmission power levels at the UAV and
different distances between the UAV and GCU.
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Figure 6.10: Comparison of average SNR at different distances: With UAV deployment and without
UAV deployment.

transmission and the other without UAV deployment. When examining the graph, it becomes evident
that as the distance between the transmitter and receiver increases, the average SNR experiences a
dramatic decrease when no UAV support is available. On the contrary, when a UAV is deployed
to assist in transmission, there is a notable increase in the average SNR across all distances. From
this graph, a clear conclusion can be drawn: the UAV-assisted communication system outperforms
the terrestrial-based communication system in terms of maintaining a consistently higher average
SNR. This indicates that UAV-assisted communication is more reliable and effective, particularly
when dealing with longer transmission distances.

In Figure 6.11, the relationship between UAV altitude and classification accuracy is illustrated.
Initial training of DJSCC involves setting �̄�train = 20 dB and 𝐾 𝑓 = 2. It is important to note that
the performance of the DJSCC relies heavily on the SNR level. Consequently, when the UAV
operates at lower altitudes, the classification accuracy tends to decrease due to weaker LoS channel
conditions. However, as depicted in Figure 6.11, the classification accuracy gradually improves
as the altitude of the UAV increases, eventually reaching its optimal point. This trend observed
in Figure 6.11 is in line with what was noticed in Figure 6.9, where the average SNR value rises
towards its optimum levels owing to the presence of strong LoS conditions. Consequently, mirroring
the average SNR variation pattern, the classification accuracy starts to decline. This reduction is
attributed to the growing impact of path loss, which becomes more pronounced under robust LoS
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Figure 6.11: Classification accuracy vs. UAV altitude for different transmission power levels at the
UAV and different distances between the UAV and GCU.

channel conditions.

In Figure 6.12, the relationship between UAV altitude and AAoMI is depicted. It is essential
to note that, as indicated by equation (6.58), AAoMI depends solely on classification accuracy
when both 𝜆𝐼 and 𝜇 are constant. Consequently, at lower UAV altitudes, AAoMI is high due to
the lower classification accuracy caused by the weaker LoS channel conditions and, hence, the
reduced average SNR. However, as shown in Figure 6.12, AAoMI gradually decreases as UAV
altitude increases, eventually reaching its optimal point. This trend, observed in Figure 6.12, aligns
with what was noticed in Figure 6.11, where average classification accuracy rises towards its
optimum levels owing to the high SNR levels resulting from strong LoS conditions. Subsequently,
beyond this optimal altitude point, AAoMI starts to increase. This increase is attributed to the
reduction in classification accuracy due to low SNR, amplified by the pronounced effects of path loss.
Figure 6.13 shows the relationship between AAoMI and transmission power of the UAV-assisted
communication system. The findings highlight the substantial impact of varying transmission
power levels at the UAV on AAoMI. The graph shows a consistent pattern: as transmission power
increases, AAoMI consistently decreases. Notably, at a transmission power of 1 mW (0 dBm),
AAoMI reaches a saturation point, resulting in minimal classification accuracy at this point and the
system achieves its lowest AAoMI within approximately 0.8 seconds. Beyond this saturation point,
increasing transmission power does not further enhance the freshness of information. However,
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Figure 6.12: AAoMI vs. UAV altitude for different transmission power levels at the UAV and
different distances between the UAV and GCU.

in the absence of UAV deployment, AAoMI significantly increases compared to UAV-assisted
communication, particularly for low transmission power scenarios. Furthermore, AAoMI saturates
at a higher transmission power, approximately 10 mW (10 dBm), when UAV assistance is not
employed. This observation underscores the substantial improvements in information freshness and
power efficiency attainable through UAV integration, particularly for low-level transmission power
applications. In summary, the findings depicted in Figure 6.13 highlight the crucial role of UAV-
assisted communication in shaping the AAoI performance of the semantic-based communication
system.

Figure 6.14 illustrates the relationship between AAoMI and the image capture rate of the UAV.
It demonstrates a consistent decrease in AAoMI for the proposed wireless communication system
as the image capture rate increases. It is worth noting that in this wireless system, there is no queue
waiting for transmission. Consequently, there is no queuing delay within the system. The higher
image capture rate results in more frequent reception of images at the GCS. To put it plainly, this
reduction in AAoMI is a direct outcome of the increased frequency of image reception at the GCS.
In Figure 6.15, the graphs illustrate how classification accuracy varies with the bandwidth ratio
(𝑛𝑇/𝑘 𝑝), taking into account different transmission power levels and distances. In particular, as the
bandwidth ratio increases, there is an improvement in classification accuracy. This enhancement
can be attributed to the adoption of larger block lengths during transmission, particularly when
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Figure 6.13: AAoMI vs. transmission power for different distances between the transmitter and
receiver, both with UAV deployment and without UAV deployment.

the bandwidth ratio is increasing. Furthermore, this boost in accuracy becomes more pronounced
when the distance between the transmitter and receiver is substantial. This is primarily due to
the longer block length assisting in transmitting information accurately even when the SNR at
the receiver is poor, which often occurs in long-distance scenarios. In Figure 6.16, the graphs
depict how AAoMI changes with respect to the bandwidth ratio (𝑛𝑇/𝑘 𝑝), taking into consideration
different transmission power levels and distances. It is important to note that increasing the
bandwidth ratio leads to longer transmission times, given that 𝑘𝑃 remains constant. As observed
in Figure 6.15, increasing the bandwidth ratio results in higher classification accuracy. According
to equation (6.58), it would be expected that AAoMI decreases with an increase in the bandwidth
ratio. However, contrary to this expectation, the graphs in Figure 6.16 show that AAoMI increases
as the bandwidth ratio rises. This phenomenon can be attributed to the dominant influence of the
extended transmission time compared to the gains in classification accuracy. It is worth mentioning
that traditional communication systems typically exhibit higher AAoI with shorter block lengths
due to the strong impact of a lower error rate on AAoI[18]. In contrast, deep learning-based systems
demonstrate a lower AAoMI even with short block lengths, as they excel at extracting semantic
information efficiently without compromising accuracy. In Figure 6.17, the relationship between
UAV altitude and PSNR for image recovery is depicted. In this particular scenario, the DJSCC is
initially trained with a fixed �̄�𝑡𝑟𝑎𝑖𝑛 value of 20 dB and 𝐾 𝑓 = 2. Subsequently, the trained DJSCC
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Figure 6.14: Comparison of AAoMI against image generation (capturing) rate (𝜆𝐼 ) for various
transmission power levels and distances, both with UAV deployment and without UAV deployment.

model is applied for image transmission, where the transmitted image is reconstructed using the
received signal and the resulting PSNR is evaluated.

In the graph shown in Figure 6.17, the PSNR is measured under various UAV altitudes, which
represent different channel conditions. It is important to note that the performance of DJSCC is
closely tied to the average SNR. Hence, at lower UAV altitudes, where LoS channels are weaker,
the PSNR tends to be lower due to the diminished average SNR levels. However, as the UAV
altitude increases and the channel conditions improve, the PSNR experiences a significant boost,
approaching its optimal point.

This trend aligns with the observations made in Figure 6.9, where the average SNR values
increase as the altitude of the UAV increases and the LoS conditions strengthen. Similarly, when the
average SNR varies, the PSNR also exhibits a sharp decrease after reaching its peak performance.
It is worth noting that this decrease in PSNR is more pronounced compared to the reduction in
classification accuracy in Figure 6.11. This discrepancy arises since image reconstruction demands
a higher SNR than classification tasks.

Figure 6.18 shows the relationship between the PSNR and the number of training epochs in the
training phase of the DJSCC. Initially, there is a pronounced upward trend in PSNR, indicative
of enhanced performance of the system. However, as training progresses beyond approximately
40 epochs, PSNR will not improve much. This suggests that additional training beyond this point
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Figure 6.15: Classification Accuracy vs. bandwidth ratio (𝑛𝑇/𝑘 𝑝) for different transmission power
levels at the UAV and different distances between the UAV and GCU.

may yield diminishing returns in terms of PSNR. Furthermore, based on the simulation results, the
following key observations can be identified:

1. The average SNR exhibits a clear pattern with changes in UAV altitude. As the UAV’s altitude
approaches the optimal level, the average SNR undergoes a sharp rise, primarily attributed to
the reinforcement of LoS components. Conversely, once the altitude surpasses this optimal
point, the average SNR begins to decrease, mainly due to the increasing impact of path loss,
ultimately compromising signal quality.

2. The accuracy of classification is strongly tied to the SNR. Lower UAV altitudes, which result
in weaker LoS conditions, result in diminished accuracy. On the other hand, higher altitudes
enhance accuracy; nevertheless, surpassing the optimal altitude point leads to a decrease in
accuracy due to path loss.

3. AAoMI is highly dependent on classification accuracy when the image generation rate and
transmission time are fixed; it is also optimal at an optimal UAV altitude.

4. Transmission power has a significant impact on AAoMI, with a saturation point beyond
which increasing power does not contribute to freshness maintenance.
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Figure 6.16: AAoMI vs. bandwidth ratio (𝑛𝑇/𝑘 𝑝) for different transmission power levels at the
UAV and different distances between the UAV and GCU.

5. UAV-assisted communication significantly improves information freshness and power effi-
ciency of semantic-based communication systems, especially for low-transmission power
scenarios, compared to non-UAV deployment.

6. AAoMI decreases as the image capture rate at the UAV increases since this system does not
consider any queue for the transmission while new image updates are cleared by the UAV
while it is in the transmission of another image.

7. PSNR for image reconstruction is closely related to average SNR, emphasising the importance
of signal quality for image reconstruction.

8. Increasing the bandwidth ratio (𝑛𝑇/𝑘 𝑝) leads to a rise in the AAoMI indicating that extended
transmission time has a stronger influence than gains in classification accuracy.
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Figure 6.17: PSNR of the image reconstruction process vs. UAV altitude.

6.2.4 Conclusion

This section presented a novel approach to wildfire detection by employing UAV-assisted commu-
nication and deep learning-based JSCC. The wireless communication system model introduced in
this work effectively extracts and transmits semantic information while minimising the transmis-
sion of redundant data to ensure the freshness of the information at the receiver. This pioneering
approach significantly improves the accuracy and efficiency of wildfire detection. In addition, the
introduction of the AoMI metric and the estimation of the AAoMI through the utilization of an
SHS model have allowed us to quantitatively assess the information freshness at the receiver, which
is critical for wildfire detection. Our study highlights the substantial advantages of employing
UAV-assisted communication, particularly in scenarios with constrained transmission power, in
maintaining the freshness of information within the semantic communication system. This research
not only contributes to the field of wildfire detection but also underscores the potential of deep
learning-based UAV-assisted communication systems to enhance communication in challenging
environments, effectively transforming UAV into vigilant "Sky Sentinels."
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Chapter 7

Conclusions and Recommendations for
Future Studies

7.1 Conclusions

This dissertation analysed AoI in various wireless communication scenarios, focusing on UAV-
assisted networks, SWIPT-based communication systems, and DJSCC-based semantic communi-
cations. The thesis provides valuable analytical frameworks and insights to guide the design and
optimisation of mission-critical wireless networks that prioritise timely information delivery.

The work on URLLC-enabled UAV wireless communications estimated the AoI in URLLC-
enabled UAV relay networks. Closed-form expressions were derived for the AAoI in UAV relay
networks using finite block length information theory and SHS analysis. One of the significant
findings was the existence of an optimal UAV altitude that minimises AAoI by balancing the trade-
off between LoS probability and path loss effects of the UAV communication link. The simulation
results showed that UAV-assisted relay communication maintains a lower AAoI compared to direct
transmission, with the performance gap widening at longer distances. This is due to the ability of
the UAV to establish stronger LoS links, particularly in environments with significant obstacles,
compared to traditional terrestrial base stations.

As this UAV-assisted communication system operates with transmission errors, SHS analysis
was employed to calculate AAoI, since conventional graphical-based analyses fail to analyse
such a system. The derived closed-form equations indicate that AAoI depends mainly on the
transmission error, transmission time and update generation rate at the source. The integration
of short packet communication was crucial to calculate transmission error at the receiver. The
analysis incorporated finite block length theory to accurately model the performance of short packet
transmissions in UAV-assisted networks, especially when calculating the BLER. This analysis
allowed for a more realistic assessment of AoI in scenarios where traditional asymptotic information
theory assumptions are invalid. In summary, this work introduces parameters such as an optimal
block length that balances transmission errors and latency to minimise AoI, providing important
design guidelines for URLLC-enabled UAV communication systems.

For SWIPT-driven wireless communications, AoI in SWIPT-enabled two-way cooperative relay
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networks was estimated. This made significant contributions to understanding how the freshness of
information affects the complex interplay between EH and information transfer in SWIPT systems.
The focus was on estimating the AAoI under two different transmission policies at the relay: TWW
and WUC. In the TWW policy, the relay transmits immediately after receiving an update from
the source, using the energy harvested during the reception time of the update without waiting. In
contrast, in the WUC policy, the relay waits until it reaches sufficient energy before transmitting
an update to the destination. A key contribution was the development of an analytical framework
that derived closed-form expressions for the weighted sum AAoI at the destinations under both
policies. These expressions incorporated factors such as EH efficiency, power splitting ratio, and
transmission time. The simulation results showed that TWW outperforms WUC in terms of AAoI
when transmission power is low, while WUC achieves better reliability, especially in high-power
scenarios. These findings highlight the importance of selecting appropriate transmission policies
based on specific application requirements and energy constraints.

In addition, finite block length theory-based analysis was extended to calculate BLER in SWIPT
systems, providing a more accurate assessment of system performance under practical constraints.
This approach offered valuable insights into the trade-offs between block length, error probability,
and AoI. The impact of various factors on AAoI was evaluated, including transmission power,
packet size, and block length. This comprehensive study led to the identification of optimal power
allocation strategies for minimising AAoI under different channel conditions and transmission
policies at the relay.

A framework to estimate AoI in UAV-assisted WSNs, focusing on multi-source scenarios was
developed. This made significant contributions to understanding the dynamics of information
freshness in complex WSN deployments supported by aerial platforms. It also developed a
comprehensive theoretical framework for analysing AoI in these systems, providing valuable
insights for the design and optimisation of UAV-assisted WSNs that prioritise timely information
delivery.

A key technical contribution was the derivation of closed-form expressions for network AAoI
and BLER in multi-source scenarios. These expressions incorporate critical system parameters
such as UAV altitude, transmission power, sensor activation probability and channel conditions.
The analysis revealed an optimal UAV altitude that minimises network AAoI by balancing the
trade-off between LoS probability and path loss effects. This finding provides important guidance
for UAV deployment strategies in WSN applications.

This work determined an optimal sensor activation probability that minimises network AAoI,
given by the inverse of the number of sensor nodes. This result offers valuable insights for the
design of energy-efficient WSNs that maintain information freshness. By optimising the sensor
activation probability, the system can achieve a balance between network lifetime and timely data
delivery, addressing a critical challenge in WSN deployments.

The analysis was extended to short packet communication scenarios, acknowledging the
prevalence of small data payloads in many WSN applications. The study incorporated finite
block length theory to accurately model the performance of short packet transmissions in UAV-
assisted WSNs. This approach allowed for a more realistic assessment of AoI in scenarios where
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traditional asymptotic information theory assumptions do not hold. An optimal block length that
balances transmission errors and latency to minimise AoI was identified, providing important
design guidelines for WSNs with stringent latency requirements.

A comparative analysis between UAV-assisted WSNs and traditional fixed base station systems
was presented. The results demonstrated that UAV-assisted WSNs significantly outperform fixed
base station systems in maintaining information freshness, especially in urban environments with
complex propagation characteristics. This finding underscores the potential of UAV technology to
enhance the performance of WSNs in challenging deployment scenarios.

For semantic communications, a novel content-based AoI metric called AoMI was introduced,
addressing the limitations of conventional AoI metrics. The AoMI captured both the timeliness
and semantic accuracy of the received information at the destination in a wireless communication
system. This metric was designed to estimate the freshness of information in image classification
systems, extending beyond the temporal aspects captured by traditional AoI. AoMI considers not
only the time elapsed since the generation of an update but also the correctness of the received
information.

A DJSCC approach was proposed to minimise AoMI in wireless communication systems. The
DJSCC framework employed a deep neural network to map source signals directly to channel
inputs, eliminating the need for separate source and channel coding. This end-to-end approach
allows for more efficient transmission of semantic information, particularly in challenging channel
conditions and low bandwidth scenarios. A detailed analysis of the DJSCC architecture was
presented, including the design of the encoder, decoder and classifier components. An SHS
model was developed to analyse the AoMI performance of the proposed system. This analytical
framework provided insights into the impact of various system parameters on information freshness
and classification accuracy. Closed-form expressions for average AoMI were derived, offering
a theoretical foundation for optimising the freshness of information in semantic communication
systems.

Extensive simulations were conducted to evaluate the AoMI performance of the DJSCC-based
system compared to traditional separate source and channel coding schemes. The LDPC code
was used as the channel coding baseline, while the BPG code was used as the source coding
baseline since both coding schemes are extensively adapted in image transmission in modern
wireless communication networks. The results demonstrated that DJSCC outperforms traditional
separate source and channel coding schemes, especially at low SNR and bandwidth ratios. This
finding highlights the potential of deep learning techniques in enhancing the freshness of the
received information in wireless communication systems for time-sensitive and semantically critical
applications.

Furthermore, the concepts of AoMI and DJSCC were extended to a practical application by
adapting these two concepts to a UAV-based wildfire detection system. The system was designed
to ensure accurate and timely transmission of critical information in challenging environments,
demonstrating the potential of semantic communication principles in mission-critical applications.

The impact of various factors on AoMI performance was investigated, including UAV altitude,
transmission power, image capture rate and channel conditions. These analyses provided insights
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into design trade-offs in UAV-assisted semantic communication systems and offered guidelines for
optimising system parameters to maintain information freshness in dynamic scenarios.

This thesis has demonstrated the critical role of AoI in ensuring information freshness across
diverse wireless communication scenarios, from UAV-assisted networks to semantic communi-
cations. Through rigorous theoretical analysis and extensive simulations, the work has provided
comprehensive frameworks for optimising information timeliness in mission-critical applications.
However, it is important to acknowledge a fundamental limitation identified through this research:
the effectiveness of AoI diminishes in systems with low latency, high transmission rates, and high
transmission power. In such scenarios, where rapid update delivery naturally minimises delays, the
need for detailed AoI optimisation becomes less important. Nevertheless, the research has clearly
established the significant value of AoI in resource-constrained environments, particularly those
characterised by limited energy, restricted bandwidth, or challenging propagation conditions. Thus,
its applicability extends to interdisciplinary fields such as healthcare, industrial automation, and
environmental monitoring, where timely data delivery is critical. For example, in UAV-assisted
wildfire detection or IoT-driven industrial processes, AoI facilitates timely decision-making by
ensuring the availability of fresh and actionable information.

7.2 Recommendations for Future Studies

Based on the findings and insights gained from this thesis, the following key recommendations are
proposed for future research in the areas of AoI in wireless communication systems.

For AoI in URLLC-enabled UAV wireless communications, future work should focus on
extending AAoI analysis in Chapter 3 to multi-UAV scenarios. This extension will need to
address inter-UAV interference and more complex aerial communication network architecture
and transmission scheduling between UAVs. In addition, when AAoI is calculated in Chapter
3, it is assumed that perfect CSI is at the receiver. However, as future work, this AAoI analysis
can be extended under imperfect CSI at the receiver. To calculate BLER in finite block length
transmission with imperfect CSI, analysis in [196] can be adapted since AAoI is a function of
the BLER. Furthermore, investigating the AAoI performance under sophisticated UAV trajectory
patterns, especially in urban environments with varying LoS probabilities, will provide valuable
insights. In addition, in this chapter for the numerical simulations, block error is calculated using
approximation used in finite block length information theory; however, it can be compared with
practical short packet channel coding such as polar code [197] as further work.

In the domain of AoI estimation in SWIPT-driven wireless communications, Chapter 4 analysed
freshness of information in the communication system under two types of transmission policies:
TWW and WUC. Future work should focus on hybrid strategies that can switch between these two
policies based on instantaneous network conditions and user requirements, whether for low-latency
data or low-AoI data. A detailed study into the impact of imperfect CSI on AoI in SWIPT systems
is necessary. Furthermore, exploring AoI performance for different models of EH, such as fully
nonlinear EH models, will increase the practical applicability of theoretical results, since this
chapter focused on the piecewise nonlinear EH model. Moreover, the theoretical AoI analysis in
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Chapter 4 considered a single-antenna system; extending this work to multiple-antenna systems
will facilitate broader applicability of this analysis. Ref. [198] can be used as a base architecture
for this extension. Moreover, this chapter considers a generate-at-will update generation model;
however, sometimes the update generation model at the source can be random. As a future study,
the proposed model can be redesigned for random update generation models.

For AoI in UAV-assisted WSNs discussed in Chapter 5, future studies must consider the chal-
lenges introduced by mobile sensors and their impact on network AAoI. Furthermore, developing
sophisticated sensor activation strategies that can jointly optimize energy efficiency and information
freshness is critical for practical deployments. Investigating the application of advanced multiple
access techniques, such as non-orthogonal multiple access, for improving AoI performance in
multi-source scenarios is also recommended. Moreover, the AoI analysis in Chapter 5 limited our
analysis to the physical layer parameters. However, the impact of MAC protocols on AoI is still
unclear in this system. Thus, future studies can focus on how medium access protocols work with
AoI in these types of massive IoT networks. For such studies, system models discussed in [86, 199,
200] can be used as a foundation. In addition, further studies are needed at the implementation
level to adapt the proposed model in industrial-level WSNs.

The DJSCC-based semantic communication framework proposed in this thesis for AoI mini-
mization in image transmission shows great promise. Future research should focus on extending
AoMI and other content-based AoI metrics to diverse data types, such as text and audio. Investigat-
ing more efficient semantic communication systems through advanced deep learning architectures,
such as transformers, in DJSCC encoding and decoding is recommended. Furthermore, explor-
ing hybrid transmission models involving both DJSCC and conventional source-channel coding
schemes could yield interesting results since DJSCC-based models outperform only for the low
SNR levels compared to traditional separate source channel coding schemes.

For the UAV-based wildfire detection system design presented in this thesis, future studies
should focus on developing adaptive bandwidth ratio schemes to further optimize AoMI in dynamic
channel conditions. Integrating multiple sensor modalities, such as thermal imaging and gas sensors,
into the semantic communication framework would enhance the system’s capabilities. Investigating
how well this proposed system could scale up for large-scale environmental monitoring applications,
considering factors such as coordination between UAV swarms and distributed semantic processing,
is also crucial.

Across all areas of wireless communication, developing unified analytical frameworks that can
combine traditional timeliness metrics such as latency with semantic-aware AoI-based freshness
measures is recommended. In addition, developing a complete cross-layer optimization framework
that considers physical layer parameters and MAC protocols to minimize AoI in these semantic
communication networks is also proposed. This could provide valuable insights into the complex
interplay between different network layers and their impact on information freshness.

The application of machine learning techniques, particularly reinforcement learning, in de-
veloping adaptive transmission policies for AoI minimization in dynamic UAV-assisted networks
is a promising research direction. These learning-based methods may outperform traditional
optimization techniques under highly uncertain and time-varying channel conditions.
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Furthermore, all of the semantic communication systems described in Chapter 6, particularly
DJSCC-based systems, are incompatible with the existing digital communication infrastructure.
To support real-world applications and information freshness, further studies are necessary to
ensure their compatibility with current digital hardware. Furthermore, the proposal for semantic
communication in wireless communication systems lacks a comprehensive theoretical foundation.
To properly design semantic-aware AoI metrics, future research should aim to develop a unified
semantic-aware channel capacity for the various communication contexts.

The research community can further enhance the AoI-aware state-of-the-art in wireless commu-
nication systems by using the theoretical bases and analytic frameworks outlined in this thesis, as
well as following the recommendations in this chapter. This will contribute to the development of
future wireless networks that prioritise information timeliness and semantic relevance for a variety
of mission-critical applications in a highly interconnected world.
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Appendix A

PROOF OF LEMMA 1

The PDF of SNR at relay from each source can be calculated using (4.2) as follows,
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Then, the CDF is calculated as
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From (4.15) block error probability at the relay is calculated as follows,
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Appendix B

PROOF OF LEMMA 3

The system overall transmission error probability 𝜀𝑖 at each source can be calculated using (4.9)
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Then, using equation (4.9),𝜀𝑖 is calculated as follows:
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Appendix C

PROOF OF LEMMA 5

By using the PMF given in (4.42), the first moments of 𝑚𝑤 is computed as follows:
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APPENDIX C. PROOF OF LEMMA 5

Then, second moments of 𝑚𝑤 is computed as follows:
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ℎ𝑎𝑟𝑣
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′
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′
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ℎ𝑎𝑟𝑣

4
+

(
𝜉𝐸 ′

ℎ𝑎𝑟𝑣

)2
(
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′
ℎ𝑎𝑟𝑣

)
4
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𝐸
[
𝑚2
𝑤

]
= 1 +

(
𝜉𝐸 ′

ℎ𝑎𝑟𝑣

)2

4
+

5𝜉𝐸 ′
ℎ𝑎𝑟𝑣

4
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