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Resumo 

 

As doenças cardiovasculares são a principal causa de morte no mundo. Em 2016 este tipo de doença representou 

31% dos óbitos a nível global. “Mais de três quartos das mortes por doenças cardiovasculares ocorrem em países de 

baixa e média renda.”, destacando a disparidade no acesso a cuidados de saúde e a necessidade de soluções acessíveis 

para melhorar a prevenção e o tratamento destas condições[1]. 

Hoje, graças ao progresso tecnológico, os smartphones estão ao alcance de uma vasta parcela da população mundial. 

Segundo um estudo de 2019 do Pew Research Center, a posse de smartphones tem crescido rapidamente em diversas 

partes do mundo, incluindo um aumento notável em mercados emergentes como a Índia, o Quénia e o Vietname [2]. 

Esta ubiquidade permite que estes dispositivos, presentes no quotidiano de milhões, sejam explorados como 

ferramentas de saúde.  

O objetivo do trabalho foi contribuir para a identificação precoce de arritmias através de um modelo de Machine 

Learning e mais tarde, já fora do âmbito deste projeto, integrar o mesmo numa aplicação móvel previamente 

desenvolvida capaz de fazer a leitura da frequência cardíaca através de uma técnica chamada Fotopletismografia, 

com o objetivo final de prever eventos cardiovasculares e, assim, facilitar a intervenção precoce e a prevenção eficaz. 

Para validar essa abordagem, foi desenvolvido um modelo de Machine Learning treinado com métricas extraídas de 

sinais de ECG. Após o tratamento dos dados, os algoritmos testados permitiram avaliar a capacidade do sistema em 

distinguir entre registos com e sem arritmias irregulares. O modelo final alcançou resultados muito positivos, com um 

F1-score de 0.9000 e uma AUC de 0.9361, confirmando o potencial da análise automática de sinais cardíacos como 

ferramenta complementar no apoio ao diagnóstico precoce de condições cardíacas. 

Este projeto foi desenvolvido no âmbito do Trabalho Final de Curso (TFC) da Licenciatura de Informática de Gestão 

(LIG), sob a orientação da Professora Iolanda Velho e coorientação do Professor Lúcio Studer, docentes do 

Departamento de Engenharia Informática e Sistemas de Informação (DEISI) da Universidade Lusófona. Em parceria 

com o Professor Dr. Luís Rosário, médico cardiologista no Hospital de Santa Maria e docente na Faculdade de 

Medicina da Universidade de Lisboa (FMUL) e no Instituto Superior Técnico (IST). Foi o Dr. Luís Rosário e a sua equipa 

de investigadores do ISCTE que desenvolveram a aplicação móvel no âmbito do projeto AIMHealth [4], atualmente 

em fase de testes e ainda não disponível ao público. Este trabalho foi proposto como um contributo complementar 

para a evolução da aplicação, com vista à futura integração de capacidades de deteção automática de arritmias. 

 

Palavras-chave: Machine Learning; Arritmias; Monitorização Cardíaca; Eletrocardiograma; Fotopletismografia; 

Dispositivos Móveis; Saúde Digital 
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Abstract 
 

Cardiovascular diseases are the leading cause of death worldwide. In 2016, these diseases accounted for 31% of global 

deaths. "More than three-quarters of deaths from cardiovascular diseases occur in low and middle class countries"[1], 

highlighting disparities in access to healthcare and the need for accessible solutions to improve prevention and 

treatment. 

With the widespread adoption of mobile technology, smartphones are now accessible across diverse socioeconomic 

groups [2]. This ubiquity makes them promising tools for health monitoring. The objective of this project is to support 

the early detection of arrhythmias by developing a machine learning model, which will be later integrated into a 

previously developed mobile application capable of measuring heart rate using photoplethysmography. The ultimate 

goal is to predict adverse cardiovascular events and thus enable timely intervention and effective prevention. 

The objective of this project was to contribute to the early identification of arrhythmias through a Machine Learning 

model. This model is intended to be integrated, outside the scope of this specific project, into a previously developed 

mobile application. This application utilizes Photoplethysmography to measure heart rate, with the ultimate goal of 

predicting adverse cardiovascular events, thereby facilitating timely intervention and effective prevention. 

To validate this approach, a Machine Learning model was developed and trained using metrics extracted from ECG 

signals. After data preprocessing, the tested algorithms demonstrated the system's capability to distinguish between 

records with and without irregular arrhythmias. The final model achieved highly positive results, with an F1-score of 

0.9000 and an AUC of 0.9361, confirming the potential of automated cardiac signal analysis as a complementary tool 

to support the early diagnosis of cardiac conditions. 

This project was developed as part of the Final Course Project (TFC) for the Bachelor's degree in Information 

Technology Management at Universidade Lusófona, under the supervision of Professor Iolanda Velho and co-

supervision of Professor Lúcio Studer, both faculty members of the Department of Computer Engineering and 

Information Systems (DEISI). This work was done in collaboration with Professor Dr. Luís Rosário, a cardiologist at 

Hospital de Santa Maria and faculty member at the Faculdade de Medicina da Universidade de Lisboa (FMUL) and 

Instituto Superior Técnico (IST). Dr. Luís Rosário and his research team from ISCTE developed the mobile application 

within the scope of the AIMHealth project [4], which is currently in testing phases and not yet publicly available. This 

project serves as a complementary contribution to the evolution of the application, aiming for the future integration 

of automated arrhythmia detection capabilities. 

 

Keywords: Machine Learning; Arrhythmias; Cardiac Monitoring; Electrocardiogram; Photoplethysmography; Mobile 

Devices; Digital Health 
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1 Introdução 

As doenças cardiovasculares, como as arritmias, são uma das principais causas de morte a nível mundial [1], com um 

impacto significativo na qualidade de vida e na sobrecarga dos sistemas de saúde. Apesar da relevância do diagnóstico 

precoce, tradicionalmente, este diagnóstico dependia da utilização de equipamento especializado e infraestrutura 

hospitalar avançada. Contudo, avanços recentes têm permitido a utilização de dispositivos portáteis, aliados a 

modelos de Machine Learning, para a deteção deste tipo de condições [3]. Facilitando o acesso a diagnósticos em 

contextos de classes sociais  baixa e média. Esta evolução evidencia a necessidade crescente de soluções acessíveis, 

capazes de proporcionar monitorização contínua e deteção precoce de condições críticas como as arritmias. 

Este trabalho surge no contexto do projeto “AIM Health” [4], uma aplicação móvel previamente desenvolvida pelo 

Dr. Luís Rosário e seus alunos do IST [5] e [6]. Este software utiliza uma técnica chamada fotopletismografia (PPG) 

para medir a frequência cardíaca através da câmara e da lanterna de dispositivos móveis, a aplicação já foi autorizada 

pelo Infarmed, instituição reguladora de dispositivos de saúde, com esta autorização será considerada um dispositivo 

médico quando for disponibilizada ao público.  

A aplicação já demonstrou eficácia na medição de parâmetros fisiológicos básicos, como a frequência cardíaca e a 

frequência respiratória quando os resultados são comparados com medições provenientes de eletrocardiogramas 

hospitalares [5] e [6]. No entanto, ainda não possui funcionalidades para identificar padrões associados a arritmias. 

A proposta deste Trabalho Final de Curso (TFC) é desenvolver um modelo de Machine Learning capaz de detetar 

ritmos cardíacos anómalos, com o objetivo de, futuramente, poder ser integrado na aplicação, ampliando o seu 

contributo para o rastreio e monitorização de doenças cardiovasculares. 

Complementando o trabalho realizado, espera-se tornar a aplicação móvel numa ferramenta acessível, capaz de 

realizar monitorização cardíaca em tempo real, com impacto direto na prevenção de complicações graves, como 

Acidente Vascular Cerebral (AVC) e insuficiência cardíaca. Além disso, a solução alinha-se aos Objetivos de 

Desenvolvimento Sustentável (ODS) das Nações Unidas [7], promovendo saúde e bem-estar pelo meio de inovação 

tecnológica. 

Este trabalho destaca-se não apenas pela sua relevância clínica, mas também pelo seu suporte científico. A aplicação 

base foi fundamentada em estudos publicados pelo Dr. Luís Rosário e equipa [5] e [6], e a integração do modelo de 

Machine Learning será desenvolvida com base em dados clínicos fornecidos pelo Hospital de Santa Maria, além de 

bases de dados públicas reconhecidas.  

Esta parceria surgiu a partir de um convite da Professora Iolanda ao Dr. Luís, especialista em cardiologia e com vasta 

experiência na colaboração com estudantes, com o objetivo de unir os campos da tecnologia e da saúde. A 

colaboração entre diferentes instituições de ensino superior, nomeadamente a Universidade Lusófona, o Instituto 

Superior Técnico e o ISCTE, demonstra o valor do trabalho conjunto entre universidades, promovendo a inovação e 

permite dar continuidade a projetos já desenvolvidos, acrescentando-lhes valor. 

1.1 Enquadramento 
As arritmias cardíacas são distúrbios que afetam a frequência ou o ritmo dos batimentos cardíacos [8]. A frequência 

cardíaca refere-se ao número de batimentos por minuto, enquanto o ritmo cardíaco descreve o padrão e a 

regularidade com que os batimentos ocorrem. Distúrbios na frequência podem resultar em batimentos demasiado 

rápidos (taquicardia) ou demasiado lentos (bradicardia), enquanto alterações no ritmo podem causar irregularidades 

nos intervalos entre os batimentos, como na fibrilhação auricular (FA). Estas condições podem comprometer a 

eficiência do coração em bombear sangue, afetando a oxigenação dos tecidos e órgãos vitais. A identificação precisa 

do tipo de arritmia é crucial para a implementação de tratamentos adequados e para a prevenção de complicações 

graves, como AVC e insuficiências cardíacas [8]. 

A variabilidade da frequência cardíaca (Heart Rate Variability - HRV) representa as variações nos intervalos entre 

batimentos cardíacos consecutivos [9]. Embora possa parecer desejável que o coração bata sempre num ritmo 

constante, uma ligeira variação é, na verdade, sinal de um sistema cardiovascular saudável. Isto acontece porque o 

organismo está constantemente a adaptar-se a estímulos internos (como emoções, respiração ou digestão) e 

externos (como mudanças de temperatura ou movimento físico), e essa adaptação reflete-se nas flutuações da 

frequência cardíaca. 
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No entanto, na ausência de qualquer estímulo, espera-se que o ritmo cardíaco se mantenha relativamente estável. 

Uma HRV excessivamente irregular em repouso pode indicar problemas no controlo autonómico do coração ou a 

presença de arritmias. A fibrilhação auricular (FA), por exemplo, é uma das condições mais comuns associadas a uma 

perda clara dessa variabilidade normal, refletindo uma atividade elétrica inconstante nas cavidades superiores do 

coração, conhecidas como aurículas. 

A deteção precoce de casos de ritmo cardíaco irregular é crucial para a implementação de tratamentos que previnam 

complicações graves. Os procedimentos mais comuns após diagnóstico são: 

• Prevenção de eventos tromboembólicos, utilizando anticoagulantes orais para reduzir o risco de AVC. 

• Controlo da frequência cardíaca, através de medicamentos que regulam a resposta dos ventrículos, 

mantendo a frequência cardíaca dentro dos valores normais. 

• Controlo do ritmo cardíaco, com estratégias para restaurar e manter o ritmo normal do coração, incluindo 

cardioversão elétrica ou farmacológica e procedimentos de ablação, conforme o caso. 

A monitorização contínua e precisa dos ritmos cardíacos é, portanto, fundamental para a deteção precoce e gestão 

eficaz de eventos cardiovasculares, melhorando significativamente os prognósticos dos pacientes [10]. 

1.2 Motivação e Identificação do Problema 
A escolha deste trabalho foi impulsionada pelo meu interesse pessoal em atuar na área da saúde, aliando 

competências tecnológicas para resolver problemas reais e relevantes.  

A saúde é uma área de impacto direto na qualidade de vida das pessoas, e contribuir para a criação de soluções que 

possam melhorar diagnósticos e tratamentos sempre foi um dos principais pilares da minha trajetória académica. 

Este projeto oferece uma oportunidade única de trabalhar num tema que combina tecnologia inovadora com 

necessidades críticas do setor de saúde, proporcionando um desafio tanto técnico quanto social. 

Além disso, o projeto destaca-se pelo seu caráter colaborativo e multidisciplinar. Trabalhar num contexto que envolve 

várias entidades e especialistas de diferentes áreas, como análise de dados, tecnologia e cardiologia, representa um 

cenário enriquecedor e motivador. A parceria com o Hospital de Santa Maria, o Instituto Superior Técnico e ISCTE não 

só eleva o nível técnico do projeto, como também reforça a sua relevância prática, algo que eu dei valor na escolha 

do TFC. 

O meu TFC foi originalmente aceite com um outro tema também na área da saúde, análise de dados e tecnologia. No 

entanto, durante conversas com o Dr. Luís Rosário, que aceitou coorientar o trabalho a convite da Professora Iolanda 

Velho, surgiu a oportunidade de colaborar diretamente num projeto já em andamento. Este projeto destacou-se não 

apenas pela sua relevância clínica, mas também pelo seu caráter multidisciplinar, envolvendo profissionais de 

cardiologia, engenharia e análise de dados. A proposta de integrar um modelo de machine learning numa aplicação 

móvel para monitorização cardíaca apresentou-se como um desafio técnico e um possível contributo para a saúde 

pública. 

A deteção precoce de arritmias cardíacas, continua a ser um desafio significativo na prática clínica. Apesar dos avanços 

tecnológicos, o diagnóstico de arritmias ainda depende, na maioria dos casos, de exames realizados em ambiente 

hospitalar [10]. Esta realidade limita o acesso de grande parte da população mundial, especialmente em regiões com 

infraestruturas de saúde limitadas ou entre classes sociais com menores recursos financeiros, contribuindo para o 

subdiagnóstico e atraso na intervenção. Existe, assim, uma oportunidade clara para o desenvolvimento de soluções 

baseadas em tecnologia móvel e modelos de Machine Learning capazes de identificar sinais precoces de arritmias 

fora do contexto hospitalar. Estas abordagens visam democratizar o acesso ao diagnóstico e acelerar a resposta às 

necessidades de saúde pública. 

1.3 Objetivos 

O TFC teve como principal objetivo o desenvolvimento de um modelo de Machine Learning capaz de identificar sinais 

de ECG com uma variabilidade da frequência cardíaca (HRV) suficientemente irregular para serem considerados 

indicativos de um ritmo cardíaco anormal ou de uma condição cardiovascular. Pretende-se que este modelo alcance 

um elevado nível de precisão, garantindo a sua aplicabilidade em contextos clínicos. Numa fase posterior, será 

considerada a integração do modelo numa aplicação móvel já existente, potenciando a sua utilização em ambientes 

reais de monitorização e triagem. 

O trabalho foi, por isso, organizado em duas fases complementares. A Fase 1, concluída neste TFC, centrou-se na 

pesquisa teórica, tratamento dos dados clínicos e construção do modelo preditivo. Já a Fase 2, que inclui a integração 

do modelo na aplicação móvel e a realização de testes em ambiente real, encontra-se fora do âmbito deste trabalho 
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e está prevista como uma possível continuidade, a ser desenvolvida por futuros alunos em próximos TFCs. Abaixo 

encontra-se a descrição detalhada das duas fases propostas. 

Fase 1: Criação do Modelo de Machine Learning 

• Pesquisa sobre Arritmias e Cardiologia 

o Compreender as suas causas, características e sinais associados às arritmias 

o Estudar os métodos tradicionais de diagnóstico 

o Consultar literatura científica, para fundamentar o desenvolvimento do modelo 

• Tratamento dos Dados: 

o Identificar repositórios de dados médicos online 

o Limpar, normalizar e estruturar os dados recolhidos 

o Identificar os picos R dos sinais ECG 

o Criar métricas representativas da variabilidade da frequência cardíaca (HRV) dos sinais ECG 

• Desenvolvimento do Modelo: 

o Testar e comparar o desempenho de diferentes modelos de Machine Learning 

o Selecionar o modelo mais eficaz para prever a presença de arritmias 

Fase 2: Implementação e Integração na Aplicação Móvel 

• Integração na Aplicação: 

o Incorporar o modelo na aplicação já existente 

o Implementar a funcionalidade de deteção de FA em tempo real 

• Testes de Usabilidade e Validação Clínica: 

o Realizar testes com utilizadores finais, como profissionais de saúde e pacientes 

o Validar os resultados da aplicação em cenários reais, comparando-os com diagnósticos feitos por 

profissionais de saúde 

 

1.4 Estrutura do Documento 

A estrutura do documento é a seguinte: 

• Secção 1: Introdução ao tema do trabalho   

• Secção 2: Discutem-se a pertinência e a viabilidade do trabalho, incluindo a relevância no contexto clínico 

e técnico. 

• Secção 3: Apresentam-se os conceitos teóricos fundamentais e os algoritmos relevantes para o 

desenvolvimento da solução. 

• Secção 4: Explora-se o estado da arte, analisando soluções existentes e destacando a proposta de inovação 

e as mais-valias do projeto. 

• Secção 5: Detalha-se a solução proposta, incluindo as metodologias, a recolha e o pré-processamento de 

dados, e a análise exploratória dos mesmos. 

• Secção 6: Descreve-se o método e o planeamento seguido no desenvolvimento do projeto, incluindo o 

cronograma previsto (Gantt) e a análise crítica da execução face ao planeado. 

• Secção 7: Apresentam-se os resultados obtidos com os modelos desenvolvidos, discutindo o desempenho 

dos diferentes algoritmos, as limitações identificadas e a relevância dos resultados. 

• Secção 8: Conclui-se o trabalho, sintetizando os principais contributos, e são propostas direções futuras 

para evolução da solução. 
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2 Pertinência e Viabilidade  

2.1 Pertinência 

Este trabalho é relevante devido ao elevado número de pessoas que podem beneficiar de um diagnóstico precoce, 

reduzindo significativamente o risco de complicações graves como casos de AVC e de insuficiência cardíaca. O projeto 

procura responder à necessidade de ferramentas acessíveis, portáveis e eficientes para a deteção precoce destas 

condições, tornando possível utilizar tecnologias móveis não apenas para a medição da frequência cardíaca mas 

também para a identificação de padrões patológicos associados à variabilidade cardíaca. Além disso, a possibilidade 

de um paciente conseguir obter, a qualquer momento, um registo PPG através do seu telemóvel permite-lhe guardar 

dados de momentos específicos em que se sentiu mal, facilitando a posterior análise clínica e contribuindo para 

diagnósticos mais precisos e informados. 

A relevância clínica do projeto é reforçada pela colaboração com o Dr. Luís Rosário, Médico cardiologista e também 

Professor, envolvido em projetos de investigação na área. 

O trabalho já desenvolvido deu origem a dois artigos científicos publicados em revistas internacionais de alto impacto: 

• "Benchmarking of Sensor Configurations and Measurement Sites for Out-of-the-Lab 

Photoplethysmography" (2024) [5] 

• "Validation of an mHealth System for Monitoring Fundamental Physiological Parameters in the Clinical 

Setting" (2023) [6] 

2.2 Viabilidade 

Alinhamento com os Objetivos de Desenvolvimento Sustentável 

Os Objetivos de Desenvolvimento Sustentável (ODS) foram estabelecidos pela Organização das Nações Unidas como 

parte da Agenda 2030. Estes objetivos visam erradicar a pobreza, proteger o planeta e garantir condições de paz e 

prosperidade para todos. Cada objetivo define áreas estratégicas prioritárias, incluindo a promoção da saúde, da 

inovação e do desenvolvimento de infraestruturas. 

O projeto está alinhado com os seguintes ODS [7]: 

• ODS 3 - Saúde e Bem-Estar: Contribui para melhorar o diagnóstico precoce de arritmias, prevenindo 

complicações graves e promovendo o bem-estar da população. 

• ODS 9 - Indústria, Inovação e Infraestrutura: Promove a integração de tecnologias inovadoras, como 

Machine Learning e dispositivos móveis, no campo da saúde. 

• ODS 10 – Resolução das Desigualdades: O projeto contribui diretamente para a redução das desigualdades 

ao democratizar o acesso à monitorização de saúde cardíaca, oferecendo uma solução amplamente 

acessível via smartphone, o que pode beneficiar populações em regiões com menor acesso a cuidados 

médicos especializados. 

Viabilidade Técnica 

A implementação técnica do projeto é viável devido à escolha de ferramentas consolidadas e amplamente utilizadas, 

como Python e bibliotecas de Machine Learning (por exemplo: pandas, sklearn, numpy). Estas ferramentas permitem 

um desenvolvimento eficiente e flexível, adequando-se ao processamento dos dados e ao desenvolvimento do 

modelo de Machine Learning. 

Para o desenvolvimento e validação do modelo, foi utilizada exclusivamente uma base de dados pública de elevada 

qualidade disponibilizada pelo site PhysioNet disponível em: https://physionet.org/ , nomeadamente o dataset A 

Large Scale 12-lead Electrocardiogram Database for Arrhythmia Study [11]. 

Embora tenha sido inicialmente considerada a possibilidade de incluir dados clínicos provenientes do Hospital de 

Santa Maria, essa colaboração permanece como uma perspetiva para trabalhos futuros. 

Adicionalmente, existem outros bancos de dados relevantes e fiáveis para investigação médica, como:  

• CDC WONDER (wonder.cdc.gov) 

https://physionet.org/
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• UK Biobank (ukbiobank.ac.uk) 

• MIMIC Database (mimic.mit.edu) 

• PhysioNet CharisDB (physionet.org) 

Alguns destes repositórios exigem pedidos formais de acesso específicos para investigação, os quais passam por 

processos de aprovação ética e legal que devido à complexidade do processo, pode ser demorado. Dado o tempo 

limitado disponível para o desenvolvimento deste projeto, optou-se por utilizar dados de acesso imediato e público, 

assegurando o cumprimento dos prazos sem comprometer a qualidade científica do trabalho.  

A aplicação móvel, embora ainda não disponível ao público, já obteve aprovações da comissão de ética do Infarmed. 

Estas aprovações conferem-lhe o estatuto de dispositivo médico, tornando-a uma fonte de informação fidedigna para 

uso em ambiente hospitalar. Este estatuto oferece uma base sólida para a futura integração do modelo proposto, 

oportunidade que se encontra fora do âmbito deste TFC, mas que representa um caminho promissor  para trabalhos 

futuros, eliminando a necessidade de desenvolver uma infraestrutura nova. 

Viabilidade Económica 

O desenvolvimento do projeto é viável de um ponto de vista económico, uma vez que: 

• Não existem custos associados a licenças de software ou plataformas, dado que todas as tecnologias 

utilizadas são de livre acesso (open-source) ou estão disponíveis gratuitamente através de parcerias e 

acordos estabelecidos com a universidade. 

• O dataset utilizado é público e acessível para fins de investigação, não implicando custos adicionais. 

Em comparação com os métodos tradicionais de diagnóstico de arritmias, como o eletrocardiograma que exige um 

Eletrocardiógrafos (dispositivo médico utilizado para realizar um ECG), infraestruturas hospitalares e a supervisão de 

profissionais de saúde, a solução proposta não tem custos adicionais para o utilizador final. No setor público, o custo 

de um ECG pode ser de apenas 1,40€, contudo, existe a incerteza quanto aos tempos de espera para a marcação do 

exame e o seguimento subsequente. Em contraste, no setor privado, os custos de um ECG variam significativamente: 

23€ na CUF, 44,60€ no Hospital da Luz, e entre 35€ e 40€ no Hospital da Cruz Vermelha. A deteção de arritmias em 

casa via smartphone é essencialmente gratuita para o utilizador, aproveitando um dispositivo que já possui, e elimina 

por completo os tempos de espera associados aos sistemas de saúde tradicionais [12] [13] [14] [15]. 

Assim, o projeto demonstra ser financeiramente sustentável e poderá ser continuado sem a necessidade de 

financiamento externo. Adicionalmente, esta abordagem tem o potencial de gerar benefícios económicos indiretos 

significativos. A identificação precoce de arritmias e a consequente intervenção atempada podem levar a uma 

redução drástica de internamentos hospitalares, visitas a urgências e diagnósticos tardios de condições cardíacas 

graves, resultando em poupanças substanciais para os sistemas de saúde e melhoria da qualidade de vida dos 

pacientes. 

Viabilidade Social 

A viabilidade social deste projeto está no seu impacto positivo para pacientes com problemas cardíacos. A solução 

proposta é uma ferramenta acessível e prática, terá em conta a sua usabilidade, sendo desenvolvida a pensar num 

vasto leque de utilizadores, incluindo idosos e indivíduos de diversos extratos socioeconómicos. 

Esta abordagem democratiza a monitorização cardíaca, tornando-a inclusiva e contínua, e é particularmente benéfica 

para aqueles com dificuldades de acesso a dispositivos médicos tradicionais e a um diagnóstico precoce. O seu 

impacto é especialmente relevante em zonas remotas ou rurais, onde a escassez de cardiologistas e infraestruturas 

de saúde especializadas limita drasticamente o acesso a cuidados. Ao permitir que a monitorização ocorra de forma 

remota, a aplicação preenche uma lacuna crucial nestes contextos. 

Além da deteção, a aplicação tem um grande potencial para a educação em saúde. Poderá fornecer alertas 

personalizados, explicações claras sobre os dados recolhidos e recomendações baseadas em evidências, capacitando 

os utilizadores a gerir melhor a sua condição e a adotar hábitos mais saudáveis, promovendo assim um maior controlo 

sobre a sua própria saúde. 
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3 Conceitos Fundamentais 

3.1 Conceitos Teóricos 

3.1.1 Coração  

O coração é o órgão central do sistema cardiovascular, responsável por bombear o sangue por todo o corpo, 

garantindo que os tecidos e órgãos recebam o oxigénio e os nutrientes de que necessitam para funcionar 

corretamente, ao mesmo tempo que remove dióxido de carbono e outros resíduos para serem eliminados por outros 

órgãos. Além disso, o coração controla o ritmo e a velocidade dos batimentos cardíacos e mantém a pressão arterial. 

O funcionamento do coração, exemplificado na Figura 1, assenta num ciclo contínuo de circulação do sangue através 

das suas quatro câmaras, dois átrios (superiores) e dois ventrículos (inferiores), e num sistema de válvulas que 

assegura a direção correta do fluxo sanguíneo [16]. 

O lado direito do coração recebe sangue pobre em oxigénio proveniente do corpo, através das veias cava superior e 

inferior, conduzindo-o ao átrio direito. Este sangue é então transportado para o ventrículo direito ao passar pela 

válvula tricúspide. Durante a contração ventricular, o sangue é impulsionado pela válvula pulmonar para a artéria 

pulmonar, que o conduz aos pulmões para oxigenação. Na Figura 1, este percurso está representado pelas setas a 

cinzento, que indicam o trajeto do sangue não oxigenado. 

Após a troca gasosa nos pulmões, o sangue oxigenado retorna ao coração pelas veias pulmonares, entrando no átrio 

esquerdo. De seguida, atravessa a válvula mitral em direção ao ventrículo esquerdo, a câmara com maior força de 

contração, que impulsiona o sangue pela válvula aórtica para a aorta, permitindo a sua distribuição por todo o 

organismo. Este trajeto do sangue oxigenado está representado na Figura 1 pelas setas cor-de-rosa, que mostram o 

fluxo do sangue rico em oxigénio. 

Este mecanismo de bombeamento unidirecional é garantido pelo funcionamento sincronizado das válvulas cardíacas 

(tricúspide, pulmonar, mitral e aórtica), que evitam o refluxo e promovem a eficiência do ciclo cardíaco. 

Este ciclo é coordenado por um sistema elétrico interno, responsável pela geração e propagação de impulsos elétricos 

que controlam a contração do coração, assegurando um ritmo estável e eficaz. 

3.1.2 Eletrocardiograma 

O eletrocardiograma (ECG) é um exame que regista o ritmo e a atividade elétrica do coração [18]. O traçado do ECG 

é composto por ondas que refletem diferentes fases do ciclo cardíaco, como demonstrado na Figura 2 [19]:  

 

Figura 1 - Estrutura interna do coração e circulação do sangue (fonte: [17]) 
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• Onda P: Registo da atividade elétrica nas câmaras superiores do coração (aurículas). 

• Complexo QRS: Registo do movimento dos impulsos elétricos através das câmaras inferiores do coração 

(ventrículos). 

• Segmento ST: 

o Representa o momento em que o ventrículo está a contrair-se, mas sem fluxo de eletricidade. 

o Geralmente aparece como uma linha reta e nivelada entre o complexo QRS e a onda T. 

• Onda T: Mostra quando as câmaras inferiores do coração (ventrículos) estão a reajustar-se eletricamente e 

a preparar-se para a próxima contração muscular. 

Dentro do complexo QRS destaca-se o pico R, um ponto máximo positivo que corresponde ao momento em que o 
impulso elétrico atinge o seu auge nos ventrículos. 

A deteção precisa do pico R é essencial para a identificação dos batimentos cardíacos. É possível concluir através da 
Figura 3 que a partir da posição temporal dos picos R, é possível calcular o intervalo RR, definido como o tempo 
entre dois batimentos consecutivos.  

 

A análise dos intervalos RR fornece métricas fundamentais para a avaliação da variabilidade da frequência cardíaca 
(HRV), esta variabilidade é um dos indicadores principais de arritmias  [15]. 

Figura 2 - Funcionamento ECG (fonte:  [19]) 

Figura 3 - Exemplo de Intervalo RR (fonte: [14]) 



Identificação de Arritmias através de modelos de Machine Learning 

8 
 

Desta forma, a deteção dos picos R e a análise subsequente dos intervalos RR constituem ferramentas centrais na 
identificação precoce de disfunções cardíacas. 

3.1.3 Fotopletismografia 

A Fotoplestimografia (PPG) é uma técnica não invasiva utilizada para medir variações no volume sanguíneo na 

superfície da pele. Este método baseia-se na emissão de luz por um sensor e na deteção da quantidade de luz refletida 

através dos tecidos [22]. 

O sinal PPG apresenta um sinal que reflete o ciclo de contração e relaxamento do coração, permitindo a extração de 

informações como a frequência cardíaca, a HRV e, em alguns casos, a saturação de oxigénio [24]. 

Esta tecnologia é utilizada em dispositivos de monitorização contínua, como smartwatches, pulseiras de fitness e 

oxímetros de pulso, oferecendo uma solução acessível e cómoda para a recolha de dados fisiológicos fora do 

ambiente hospitalar. 

No âmbito deste trabalho esta tecnologia seria utilizada pela aplicação para recolher as métricas essenciais para 

identificar os casos com ritmos irregulares. 

 

3.1.4 Arritmias 

As arritmias cardíacas são perturbações do ritmo normal do coração, que resultam em anomalias na geração ou na 

condução dos impulsos elétricos responsáveis pela contração cardíaca. Estas alterações, podem manifestar-se de três 

formas principais, representadas na Figura 5 [25]: 

• Batimentos demasiado rápidos (taquicardia), caracterizados por uma frequência cardíaca superior a 100 

batimentos por minuto (BPM); 

• Batimentos demasiado lentos (bradicardia), com frequência cardíaca inferior a 60 BPM; 

• Batimentos irregulares, com variação inconsistente no intervalo entre os batimentos.  

Figura 4 - Funcionamento PPG (fonte: [23]) 
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As arritmias podem comprometer a eficiência da contração cardíaca, prejudicando o fornecimento de sangue aos 

tecidos e aumentando o risco de eventos clínicos graves, como acidentes vasculares cerebrais, insuficiência cardíaca 

ou morte súbita. 

3.1.5 Arritmias com Batimentos Irregulares 

Este tipo de arritmia pode surgir em diferentes zonas do coração e inclui tanto alterações benignas como condições 

clínicas mais sérias.  

De seguida, são apresentadas as principais arritmias com este padrão identificadas no âmbito do projeto. 

  

Figura 5 - Comparação de ritmos (adaptada, fonte: [26]) 
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Fibrilhação Auricular (FA) - Atrial Fibrillation (AFIB):  

A Fibrilhação Auricular é o tipo mais comum de arritmia cardíaca. Esta condição pode comprometer 

significativamente o funcionamento cardíaco, aumentando o risco de acidente vascular cerebral, insuficiência 

cardíaca e outras complicações graves [27].  

Nas arritmias com FA, as ondas P consistentes são substituídas por ondas de fibrilhação, que variam em amplitude, 

forma e “timing” [28]. Estas alterações podem ser identificadas no traçado de ECGs e de PPGs através dos intervalos 

RR como demonstrado na Figura 6.  

Flutter Atrial - Atrial Flutter (AF):  

Atrial Flutter é uma arritmia cardíaca caracterizada por contrações rápidas e regulares das aurículas, geralmente com 

uma frequência atrial entre próxima dos 300 BPM. Este ritmo origina-se normalmente por um circuito elétrico 

reentrante no átrio direito, criando um padrão em “dente de serra” visível no ECG [29].  

A Figura 7 mostra um exemplo da irregularidade dos intervalos RR, marcada pela ausência da onda P e pela variação 

dos intervalos entre os batimentos ventriculares.  

Arritmia Sinusal - Sinus Irregularity (SA):  

A SA é um tipo de arritmia benigna caracterizada por variações no intervalo entre os batimentos cardíacos, 

normalmente relacionadas com o ciclo respiratório. Durante a inspiração, os batimentos tendem a acelerar, e durante 

a expiração, abrandam, o que resulta em intervalos RR irregulares [31].  

Figura 6 - ECG normal e com FA (adaptada, fonte:  [28]) 

Figura 7 - ECG com AF (adaptada, fonte: [30]) 

Figura 8 - Normal Sinus Rhythm e SA (adaptada, fonte: [31]) 
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Como mostra a Figura 8, o ritmo sinusal normal apresenta intervalos regulares entre os batimentos, enquanto que 

na SA esses intervalos variam. Apesar de ser considerada uma arritmia, não representa perigo e é comum em pessoas 

jovens e saudáveis, sendo um reflexo normal da interação entre o sistema nervoso autónomo e o coração.  

Ritmo Atrial Migratório do Nodo Sinusal – Sinus Atrium to Atrial Wandering Rhythm (SAAWR):  

O Sinus Atrium to Atrial Wandering Rhythm, também conhecido como Wandering Atrial Pacemaker, é uma arritmia 

benigna caracterizada por uma variação no local de origem dos impulsos elétricos nos átrios, resultando em ondas P 

com morfologias diferentes num mesmo traçado ECG [32].  

Na Figura 9, é possível observar essa diferença: enquanto as ondas P de origem sinusal mantêm um aspeto 

consistente, as ectópicas (fora do nó sinusal) variam na forma e direção. 

Contração Atrial prematura - Atrial Premature Beat (APB):  

O Atrial Premature Beat, é identificado quando um batimento acontece mais cedo do que o normal e vem de uma 

parte diferente dos átrios, fora do nó sinusal. Este batimento extra pode alterar o ritmo normal do coração, causando 

uma pausa ligeiramente maior logo a seguir. Apesar de muitas vezes ser inofensivo e sem sintomas, pode provocar 

sensação de batimentos "falhados" ou palpitações, e está associado a fatores como cansaço, stress ou consumo de 

cafeína [33].  

Na Figura 10, estão identificados vários batimentos (marcados com setas) que surgem mais cedo do que os outros, e 

tem uma forma diferente, indicando que tiveram origem noutros pontos dos átrios. Depois destes batimentos 

prematuros, o coração faz pausas ligeiramente mais longas antes de voltar ao ritmo normal. 

Figura 9 - Comparação ondas P sinusal e Ectópicas (adaptada, fonte: [32]) 

Figura 10 - Exemplo de APB (adaptada, fonte: [33]) 
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Contração Ventricular Prematura - Ventricular Premature Beat (VPB):  

O Ventricular Premature Beat (VPB), também conhecido como Premature Ventricular Contraction (PVC), é um 

batimento cardíaco extra que se origina nos ventrículos antes do tempo esperado. Estes batimentos não seguem o 

ritmo normal do coração e não passam pelo nó sinusal, o que os torna visivelmente diferentes num ECG. Apesar de 

geralmente serem benignos em pessoas saudáveis, podem estar associados a doenças cardíacas se forem frequentes 

ou sintomáticos [34].   

Na Figura 11, existem dois casos de VPB, que surgem mais cedo do que o ritmo regular. Estes batimentos apresentam 

morfologia alargada e diferente, indicando a sua origem ventricular. Após cada VPB, ocorre uma “pausa 

compensatória”, um intervalo mais longo até o próximo batimento normal, que restabelece o ritmo do coração.  

 

Bigeminismo Atrial - Atrial Bigeminy (ABI):  

O Bigeminismo Atrial é um tipo de arritmia em que cada batimento normal é seguido por um batimento atrial 

prematuro. Embora possa ocorrer em indivíduos saudáveis, também pode estar associado a stress, uso de 

estimulantes ou doenças cardíacas subjacentes [35].   

Na Figura 12, é possível observar um traçado típico de ABI. Cada batimento normal é seguido por um batimento 

ectópico atrial, criando um padrão facilmente identificável. 

Bigeminismo Ventricular - Ventricular Bigeminy (VB):  

O Bigeminismo Ventricular é uma arritmia em que cada batimento normal do coração é seguido por um batimento 

ectópico de origem ventricular, conhecido como contração ventricular prematura (VPB). Este padrão alternado entre 

batimento normal e VPB pode indicar irritabilidade ventricular e pode ser causado por fatores como isquemia, 

desequilíbrios eletrolíticos ou efeito de medicamentos [36].  

Na figura 13, é possível observar um traçado com padrão típico de VB. Os batimentos normais alternam-se com 

batimentos ventriculares prematuros e ausência de onda P. Este padrão cria uma irregularidade nos intervalos RR. 

Figura 11 - Exemplo de VPB (adaptada, fonte: [34]) 

Figura 12 - Exemplo de ABI (fonte: [35]) 

Figura 13 - Exemplo de VB (fonte: [36]) 
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Junctional Escape Beat (JEB):  

O Junctional Escape Beat é um batimento de substituição, feito a partir do nó atrioventricular, geralmente quando o 

nódulo sinusal falha ou atrasa. Atua como um mecanismo de segurança do coração para evitar longas pausas no ritmo 

[37].   

Na figura 14, observa-se um ritmo de escape juncional, é evidente o papel de segurança desempenhado pelo nó 

atrioventricular quando a atividade sinusal falha.  

Junctional Premature Beat (JPT):  

O Junctional Premature Beat é um batimento que tem uma origem precoce na junção atrioventricular, antes do 

batimento sinusal esperado. Frequentemente, está associado a estimulação aumentada do nó atrioventricular, 

podendo ocorrer em pessoas saudáveis, mas também em contextos de irritação miocárdica, como em casos de 

isquemia ou uso de certos medicamentos [38].  

No sinal apresentado na Figura 15, o quinto batimento é o JPT, identificável pela sua ocorrência precoce em relação 

ao ritmo regular.  

 

Ventricular Escape Beat (VEB):  

O Ventricular Escape Beat é um batimento de "recurso" gerado nos ventrículos quando o ritmo cardíaco normal falha 

em produzir um impulso atempadamente. É uma resposta protetora do coração e pode ocorrer em situações de 

bloqueio AV completo, bradicardia severa ou paragem sinusal [39].  

Na Figura 16, o sexto batimento é um VEB, aconteceu depois de uma pausa prolongada, destacando-se do ritmo 

regular até ao momento.   

Trigeminismo de Escape Ventricular - Ventricular Escape Trigeminy (VET):  

O Ventricular Escape Trigeminy é um padrão rítmico em que um batimento ventricular ectópico (geralmente um PVC) 

ocorre a cada três batimentos cardíacos. Este fenómeno representa uma resposta do ventrículo, frequentemente em 

situações em que os impulsos normais estão comprometidos ou há uma supressão do ritmo sinusal. O padrão é cíclico 

e pode indicar instabilidade elétrica do coração [40].  

Na Figura 17, é possível observar a ocorrência de um complexo ventricular prematuro (etiquetado como "PVC") a 

cada terceiro batimento, formando o padrão típico de trigeminy.  

Figura 14 - Exemplo de JEB (fonte: [37]) 

Figura 15 - Exemplo de JPT (fonte: [38]) 

Figura 16 - Exemplo de VEB (fonte: [39]) 

Figura 17 - Exemplo de VET (fonte: [40]) 
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3.2 Modelos e Algoritmos Relevantes 

Para o desenvolvimento deste trabalho, serão considerados e comparados diferentes modelos e algoritmos, 

selecionados com base na sua adequação à natureza dos dados e ao problema a ser resolvido. 

Os algoritmos propostos para este trabalho incluem a Regressão Logística, SVM, Random Forest e Gradient Boosting, 

cada um com características distintas e aplicações específicas na classificação e análise de dados. 

3.2.1 Regressão Logística 

A Regressão Logística é um modelo linear utilizado para resolver problemas de classificação binária, como distinguir 

entre ritmos cardíacos normais e anormais. [41]. 

O modelo estima a probabilidade de uma amostra pertencer à classe positiva (y = 1) ao aplicar uma função logística 

(sigmoide) sobre uma combinação linear das variáveis de entrada, resultando numa curva em forma de "S", como 

ilustrado na Figura 18. 

Apesar da sua simplicidade, a regressão logística serve como uma linha de base confiável para comparação com 

algoritmos mais complexos. 

3.2.2 Support Vector Machines (SVM) 

O SVM ou Support Vector Classifier (SVC) é um modelo eficaz na identificação de padrões complexos, mesmo em 

contextos com dados de alta dimensionalidade [42].  

Como ilustrado na Figura 19, o SVM procura encontrar o hiperplano ótimo (linha a tracejado) que separa duas classes, 

neste caso, representadas por círculos e cruzes, maximizando a distância entre os pontos mais próximos de cada 

classe (os chamados vetores de suporte, destacados com contornos). Esta maximização da margem ajuda a melhorar 

a generalização do modelo, reduzindo o risco de overfitting (casos em que o modelo se ajusta demasiado bem aos 

dados de treino, que acaba por perder desempenho ao lidar com dados novos). 

Figura 19 - Exemplo de SVM (fonte: [42]) 

Figura 18 - Curva Regressão Logística (adaptada, Fonte: [41]) 
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3.2.3 Random Forest 

O Random Forest baseia-se na construção de múltiplas árvores de decisão, combinando os seus resultados para 

melhorar a precisão da classificação [43].   

Como ilustrado na Figura 20, cada árvore é treinada com subconjuntos diferentes dos dados, e quando um novo 

exemplo (ponto roxo) precisa de ser classificado, é passado por todas as árvores. Cada árvore dá a sua previsão (neste 

caso seria classe verde ou cinzenta), e a decisão final é feita através de uma votação maioritária ou média, resultando 

numa previsão mais robusta do que se fosse apenas classificado por uma árvore. 

3.2.4 Gradient Boosting 

O Gradient Boosting é uma abordagem de aprendizagem por reforço sequencial, onde cada novo classificador é 

treinado para corrigir os erros cometidos pelos modelos anteriores [45].   

Na Figura 21, é possível ver como o processo começa com um conjunto de dados original e, a cada iteração, os pesos 

dos dados são ajustados para dar mais importância aos exemplos que foram mal classificados. 

Neste projeto, foi utilizado o XGBoost (Extreme Gradient Boosting), uma implementação otimizada do Gradient 

Boosting, conhecida pelo seu elevado desempenho e eficiência computacional. Ao contrário de métodos como o 

Random Forest, que constroem árvores em paralelo, o XGBoost constrói-as de forma encadeada, tornando-o 

especialmente eficaz em conjuntos de dados desafiantes com padrões complexos e desequilíbrios entre as classes. 

  

Figura 20 - Funcionamento Random Forest (adaptada, Fonte: [44]) 

Figura 21 - Funcionamento Gradient Boosting (adaptada, Fonte: [46]) 
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3.3 Métricas de Avaliação de Modelos de Machine Learning 

Para avaliar o desempenho dos modelos desenvolvidos, foram utilizadas as métricas: 

• Precisão - Precision: mede a proporção de casos verdadeiramente positivos entre todas as previsões 

positivas feitas pelo modelo. Esta métrica é útil para perceber quantos dos diagnósticos positivos 

identificados pelo o modelo estão realmente corretos. A precisão é calculada pela seguinte fórmula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

Onde TP são os verdadeiros positivos e FP os falsos positivos. Um valor alto de precisão significa que o 

modelo é confiável nas suas previsões positivas [47]. 

• Sensibilidade - Recall: indica a capacidade do modelo em identificar corretamente todos os casos positivos 

reais. No contexto da deteção de arritmias, o Recall mostra quantos dos pacientes com arritmia foram 

corretamente detetados. A sensibilidade é calculada pela fórmula:    

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

Sendo FN os falsos negativos. Uma sensibilidade alta garante que poucos pacientes doentes são ignorados, 

sendo, portanto, prioritário em sistemas de apoio à decisão clínica onde a sensibilidade do rastreio é 

essencial. [47]. 

• Especificidade - Specificty: mede a proporção de casos verdadeiramente negativos entre todos os casos 

negativos reais. Ou seja, quantos dos pacientes que não têm arritmia foram corretamente identificados 

como negativos pelo modelo. Esta métrica é particularmente importante em contextos clínicos onde é 

necessário evitar alarmes falsos, assegurando que os pacientes saudáveis não são classificados 

incorretamente como doentes. A especificidade é calculada como:   

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 

Onde TN representa os verdadeiros negativos e FP os falsos positivos [48]. 

• Acurácia - Accuracy: indica a proporção total de previsões corretas (tanto positivas como negativas) entre 

todas as previsões realizadas pelo modelo. Em outras palavras, mede a capacidade geral do modelo em 

classificar corretamente os casos. No entanto, em conjuntos de dados desequilibrados, onde uma classe é 

muito mais frequente do que a outra, a acurácia pode ser enganadora. A fórmula é:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

Sendo TP os verdadeiros positivos, TN os verdadeiros negativos, FP os falsos positivos e FN os falsos 

negativos [49]. 

• F1-Score: representa o equilíbrio entre a precisão e a sensibilidade, sendo a média “harmónica” destas duas 

métricas, penalizando fortemente valores muito baixos em qualquer uma das duas métricas. Esta métrica 

é especialmente relevante quando é necessário encontrar um compromisso entre evitar falsos positivos e 

não falhar casos verdadeiros, como ocorre na deteção de condições clínicas sensíveis. A sua fórmula é: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

Um valor alto de F1-Score indica que o modelo tem bom desempenho tanto em identificar corretamente 

os casos positivos como em evitar classificações incorretas [47]. 

• AUC (Área Sob a Curva ROC): uma medida que quantifica a capacidade de um modelo de classificação 

binária em distinguir corretamente entre as classes positiva e negativa. A curva ROC (Receiver Operating 

Characteristic) representa diferentes combinações de True Positive Rate (sensibilidade) e False Positive Rate 

(1 - especificidade) ao variar o limiar de decisão. A AUC corresponde à área total sob essa curva, e seu valor 

varia entre 0,5 (equivalente a classificar ao acaso) e 1,0 (modelo perfeito). Um valor mais próximo de 1 

indica melhor desempenho do modelo em separar as classes [50]. 

• Matriz de Confusão: A matriz de confusão é uma ferramenta fundamental na avaliação do desempenho de 

modelos de classificação, especialmente em problemas de classificação binária como a deteção de 

arritmias. Esta matriz organiza os resultados das previsões do modelo em quatro categorias principais, 

permitindo analisar detalhadamente onde o modelo acerta e onde falha [51]. Na Figura 22 é demonstrado 
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um exemplo da Matriz de confusão no diagnóstico médico binário (doente e saudável).   

A matriz está dividida em quatro quadrantes: 

o Verdadeiros Positivos - 60 casos: representam os pacientes que efetivamente têm a doença e 

foram corretamente identificados como doentes pelo modelo. 

o Falsos Positivos - 15 casos: são os pacientes saudáveis que foram incorretamente classificados 

como doentes. 

o Falsos Negativos - 10 casos: referem-se aos pacientes com a doença que o modelo classificou 

incorretamente como saudáveis, o que pode representar uma falha crítica em contextos clínicos. 

o Verdadeiros Negativos - 15 casos: correspondem aos pacientes saudáveis que foram 

corretamente identificados como tal.  

Assim, a matriz de confusão é uma ferramenta indispensável na interpretação e validação de modelos de 

ML aplicados à saúde, permitindo não só quantificar a performance geral, mas também identificar pontos 

críticos de melhoria do modelo. 

3.4 Tecnologias e Ferramentas Utilizadas 

Python (Linguagem de Programação - Desenvolvimento do Modelo de ML) 

Python foi escolhido pela sua simplicidade e eficiência, sendo amplamente utilizado para projetos de machine 

learning graças à grande quantidade de bibliotecas e recursos disponíveis. 

Todas as bibliotecas foram obtidas através do repositório oficial PyPi [52]. 

Bibliotecas principais Python: 

• Numpy: Cálculos matemáticos e manipulação de arrays. 

• Pandas: Análise e manipulação de dados estruturados. 

• Matplotlib: Criação de gráficos e visualizações dos dados. 

• Scikit-learn (Sklearn): Biblioteca essencial para a criação de modelos de Machine Learning, divisão de dados 

(como train_test_split), métricas de avaliação (ex: F1-score e classification_report) e para a visualização da 

matriz de confusão com confusion_matrix e ConfusionMatrixDisplay. 

• XGBoost: Biblioteca utilizada na criação de modelos de ML de alto desempenho. 

• WFDB: Leitura e processamento de sinais de ECG no formato dos datasets provenientes do repositório 

PhysioNet. 

Figura 22 - Matriz de confusão (fonte: [51]) 
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• SciPy: Biblioteca usada tanto para processamento de sinais (como deteção de picos com scipy.signal) como 

para cálculo de estatísticas (como skewness e kurtosis com scipy.stats) aplicadas aos intervalos RR. 

• Systole-Detectors: Algoritmos clássicos de deteção de picos, em especial o algoritmo de Pan-Tompkins. 

• NeuroKit2: Extração automática dos picos R dos sinais de ECG. 

• Joblib: Guardar e carregar modelos de machine learning de forma eficiente e persistente. 

• Warnings: Biblioteca que permite suprimir ou controlar mensagens de aviso durante execução de código. 

PyCharm (IDE - Integrated Development Environment) 

O PyCharm foi utilizado como ambiente de desenvolvimento, devido à sua facilidade de uso e suporte avançado para 

programação em Python, incluindo ferramentas de debugging e gestão de bibliotecas. 

Flutter (Futura Integração do modelo na Aplicação Móvel) 

A aplicação móvel desenvolvida no âmbito do projeto AIMhealth foi construída utilizando a tecnologia Flutter. Esta 

escolha estratégica permite o desenvolvimento multiplataforma, possibilitando a criação de aplicações nativas para 

Android e iOS a partir de uma única base de código, reduzindo o esforço de manutenção e desenvolvimento.  

Tendo em conta esta base tecnológica, a futura integração do modelo de Machine Learning deverá ser realizada 

utilizando o ecossistema do Flutter. Esta abordagem garante compatibilidade com a arquitetura existente da 

aplicação e aproveita as vantagens da performance nativa e da crescente popularidade da framework no mercado de 

desenvolvimento móvel.  



Identificação de arritmias através de modelos de Machine Learning 

19 
 

4 Estado da Arte 

4.1 Estado da Arte 

Deteção de Arritmias com Fotopletismografia e Machine Learning 

Voisin et al. (2018) [53] desenvolveram um algoritmo capaz de identificar episódios de FA utilizando sinais de PPG 

obtidos por “Wearables” em condições ambulatórias. O modelo, baseado numa rede neural convolucional de 50 

camadas, alcançou uma área sob a curva (AUC) de 95%, demonstrando robustez face a artefactos de movimento 

inerentes aos sinais PPG.  

Whiting et al. (2018) [54] propuseram um método automático para reconhecer anomalias cardíacas em sinais PPG 

utilizando uma rede neural recorrente do tipo “Long Short-Term Memory”. Treinado com 400.000 amostras de PPG, 

o modelo identificou com sucesso anomalias que correspondem a casos de FA, sem necessidade de 

eletrocardiograma.  

Bulut et al. (2025) [55]: Propuseram um modelo de “Deep Convolutional Neural Network” para a deteção de 

distúrbios do ritmo cardíaco usando sinais de PPG de dispositivos wearable. Os resultados mostraram um F1-score 

de 0.94, precisão de 0.93, sensibilidade de 0.95 e acurácia de 0.94 para a classificação de arritmias como FA, 

contrações auriculares prematuras, e ritmo sinusal normal. 

Além dos avanços com sinais de PPG, Qin et al. (2017) [56] demonstraram a possibilidade de identificar picos R 

diretamente a partir de gráficos de sinais ECG. O estudo apresentou métodos automáticos para extrair as localizações 

dos complexos QRS, permitindo posteriormente calcular métricas relevantes como a variabilidade dos intervalos RR, 

fundamentais para a deteção de arritmias. 

Estes estudos reforçam a viabilidade de aplicar métodos automáticos, baseados em Machine Learning, tanto em sinais 

de PPG como em ECG, para a deteção de irregularidades cardíacas utilizando dispositivos móveis ou sistemas de 

monitorização remota. 

Aplicações Móveis para Monitorização Cardíaca 

Atualmente, existem várias aplicações disponíveis para monitorizar a saúde cardíaca. Durante o estudo, foram 

testadas as seguintes opções: 

• Cardiio - Cardiio: Heart Rate Monitor on the App Store 

• Heartify - Heartify: Heart Health Monitor on the App Store 

• Instant Heart Rate: HR Monitor - Instant Heart Rate: HR Monitor on the App Store 

Embora sejam ferramentas úteis, todas as aplicações apresentaram barreiras de acesso, exigindo pagamento para 

desbloquear funcionalidades completas, o que pode limitar a sua utilização. Além disso, antes de realizar a primeira 

medição, todas exibiram um aviso semelhante ao presente na Figura 23:  

 

Muitas aplicações no âmbito da saúde incluem avisos indicativos que não são dispositivos médicos e que as 

informações fornecidas têm fins exclusivamente educativos ou de orientação para hábitos de vida saudáveis. Esses 

avisos refletem a ausência de certificação regulatória necessária para dispositivos médicos e limitam a aplicação 

clínica direta dessas ferramentas. No entanto, o presente projeto diferencia-se ao já possuir autorização do Infarmed 

Figura 23 - Aviso app "Heartify" 

https://apps.apple.com/us/app/cardiio-heart-rate-monitor/id542891434
https://apps.apple.com/us/app/heartify-heart-health-monitor/id1546156891
https://apps.apple.com/us/app/instant-heart-rate-hr-monitor/id409625068
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para a utilização da aplicação como um dispositivo médico validado. Esta certificação garante que o projeto cumpre 

os requisitos técnicos e regulamentares necessários para oferecer um serviço confiável na medição da frequência 

cardíaca e na sua utilização como ferramenta complementar no contexto clínico. Assim, a solução proposta 

transcende as limitações das aplicações convencionais, promovendo um impacto direto na prática médica e no 

diagnóstico preventivo. 

4.2 Proposta de inovação e mais-valias 

A solução proposta destaca-se pela sua capacidade de detetar diferentes tipos de arritmias cardíacas com base na 

análise da variabilidade dos intervalos RR, utilizando modelos de Machine Learning. 

Adicionalmente, este trabalho contribui diretamente para a evolução do projeto AIMHealth. A solução desenvolvida 

pode ser adaptada para que mais tarde fosse integrada na aplicação, permitindo incorporar a funcionalidade de 

detetar de forma automática arritmias, com potencial para funcionar com dados recolhidos diretamente pela câmara 

do telemóvel. 

O facto de ser uma solução pensada para funcionar em smartphones, sem necessidade de dispositivos adicionais, 

torna-a acessível a uma grande parte da população. Combinando acessibilidade, fiabilidade e possibilidade de uso 

clínico, esta abordagem representa um passo significativo para a monitorização cardíaca remota. 
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5 Solução Proposta  

5.1 Introdução 

A solução desenvolvida está no seguinte repositório Git:  

https://github.com/DEISI-ULHT-TFC-2024-25/TFC-Aluno2114-DetecaoDeArritmiaML 

A Figura 24 detalha a organização dos ficheiros: 

Para complementar a descrição do processo de desenvolvimento e treino do modelo, foi criado um vídeo 

demonstrativo. Este vídeo ilustra as etapas chave do código, desde o pré-processamento dos dados até à criação e 

avaliação do modelo de Machine Learning.  

O vídeo pode ser acedido através do seguinte link: https://www.youtube.com/watch?v=NDYwvJRMCfM  

5.2 Metodologia 

A metodologia do projeto pode ser dividida em duas fases do trabalho, a segunda fase está dependente da parceria 

com o projeto AIMHealth, e seria desenvolvida em TFCs de anos futuros. Estas fases podem ser divididas em vários 

objetivos e estão representadas na Figura 25: 

• Fase 1: Criação do Modelo de Machine Learning 

o Pesquisa conceitos médicos 

▪ Estudo sobre, funcionamento do coração, arritmias relevantes e interpretação de ECGs; 

o Pesquisa sobre o Estado da Arte 

▪ Análise de abordagens já existentes para deteção de arritmias com Machine Learning. 

o Procura e Seleção de Dataset 

▪ Identificação de datasets públicos; 

▪ Avaliação da qualidade dos dados (número de amostras, duração do sinal, frequência 

de amostragem e anotações sobre o diagnóstico de cada caso). 

o Análise Exploratória dos Dados 

▪ Visualização dos sinais; 

▪ Analisar distribuição dos diagnósticos 

▪ Verificação de missing values e formatação incorreta 

o Tratamento e Preparação dos Dados 

▪ Limpeza dos dados; 

▪ Identificação dos picos R 

▪ Extração de características (intervalos RR e métricas sobre a variabilidade deles) 

Figura 24 - Estrutura ficheiros (fonte: repositório Git) 

https://github.com/DEISI-ULHT-TFC-2024-25/TFC-Aluno2114-DetecaoDeArritmiaML
https://www.youtube.com/watch?v=NDYwvJRMCfM
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o Criação dos Modelos 

▪ Escolha e parametrização dos algoritmos 

▪ Treino dos modelos 

▪ Comparar Métricas de desempenho 

• Fase 2: Implementação e Integração do modelo na Aplicação Móvel 

 

5.3 Recolha de Dados 

A recolha de dados foi uma etapa fundamental no desenvolvimento do modelo. Foram avaliados vários conjuntos de 

dados públicos, mas muitos acabaram por ser excluídos por diferentes motivos: . 

• Restrições de acesso: sendo dados médicos, era comum que alguns datasets exigissem um pedido formal 

por parte de um investigador responsável. Dado o tempo limitado para a execução deste projeto, este 

processo burocrático tornava-os inviáveis. 

• Falta de datasets com PPG: inicialmente, o objetivo era usar sinais PPG. No entanto, por ser uma tecnologia 

mais recente, ainda existem poucos datasets públicos com dados PPG, ao contrário dos sinais ECG que já 

são amplamente utilizados e documentados. 

• Número insuficiente de registos: foram encontrados alguns datasets com potencial, mas que continham 

poucos registos, o que dificultaria o treino eficaz dos modelos de Machine Learning. 

• Amostras demasiado curtas: nalguns casos, a duração dos sinais era demasiado reduzida, não permitindo 

identificar padrões relevantes na linha do ECG nem extrair métricas fiáveis de variabilidade do ritmo 

cardíaco. 

• Qualidade do sinal: alguns conjuntos de dados apresentavam sinais com muito ruído ou obtidos com baixa 

resolução (frequência de amostragem reduzida), o que prejudicava a deteção precisa dos picos R e 

comprometia a fiabilidade do modelo. 

• Ausência de diagnóstico clínico: para treinar modelos de forma correta, era essencial que os sinais 

estivessem associados a diagnósticos validados por profissionais de saúde. Sem esta informação, os dados 

não podiam ser utilizados de forma adequada. 

Para o desenvolvimento do projeto, foram utilizados dados disponibilizados na plataforma PhysioNet, em particular 

o conjunto de dados A Large Scale 12-Lead Electrocardiogram Database for Arrhythmia Study [11]. Disponível em: 

https://physionet.org/content/ecg-arrhythmia/1.0.0/ . Esta base de dados fornece sinais de ECG recolhidos de 

pacientes reais, com registos clínicos anonimizados todos eles com diagnósticos feitos por vários profissionais de 

saúde. 

Como já foi mencionado, inicialmente, previa-se a utilização de sinais PPGs, dada a sua relevância na aplicação prática 

em dispositivos móveis. Contudo, durante a fase de pesquisa, constatou-se uma elevada dificuldade em encontrar 

bases de dados públicas que disponibilizassem sinais PPG com qualidade suficiente para a análise pretendida. Esta 

limitação levou à necessidade de reorientar o projeto para trabalhar com sinais de ECGs. 

Figura 25 - Fluxo das fases do TFC 

https://physionet.org/content/ecg-arrhythmia/1.0.0/
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Em paralelo, estava prevista a utilização de dados clínicos do Hospital de Santa Maria e de sinais recolhidos pela 

aplicação móvel desenvolvida no âmbito do projeto AIMHealth. Contudo, não foi possível cruzar estes dados com os 

do dataset público. Esta situação foi acompanhada em diversas reuniões com os responsáveis pelo projeto AIMHealth 

e pelo Hospital de Santa Maria, com o objetivo de viabilizar a integração futura destes dados no trabalho. 

5.4 Descrição dos dados 

O dataset [11], contém 45.150 registos de sinais de eletrocardiograma provenientes de pacientes reais, do Shaoxing 

People’s Hospital na cidade Shaoxing na China, são registos anonimizados, e acompanhados de informações 

demográficas e clínicas relevantes. 

Cada registo é constituído pelas seguintes variáveis principais: 

• Sinal de ECG: Série temporal contínua que representa o traçado do sinal elétrico do coração. Cada registo 

tem a duração de 10 segundos e foi registado com uma frequência de amostragem de 500 Hz, o que significa 

que foram recolhidos 500 valores por segundo. Esta alta resolução temporal permite capturar com precisão 

as rápidas variações elétricas do ciclo cardíaco, essenciais para a identificação de eventos como os picos R, 

garantindo a qualidade dos dados utilizados para treinar os modelos de ML. 

• Idade: Valor numérico, indica a idade do paciente no momento da recolha do sinal. 

• Sexo: Informação categórica (masculino ou feminino). 

• Diagnóstico: Lista de condições clínicas associadas a cada paciente, codificadas segundo a terminologia 

SNOMED-CT [57] e mapeadas para acrónimos mais interpretáveis, como por exemplo "AFIB" (“Atrial 

fibrillation”) para fibrilhação auricular. 

Das 63 condições as 12 apresentadas na tabela 1 são as que fazem com que o intervalo RR do sinal do ECG seja 

irregular. 

Tabela 1 - Condições relevantes para o trabalho 

Acrónimo do diagnóstico Nome diagnóstico Código Snomed_CT 

ABI Bigeminismo Atrial 251173003 

APB Contração Atrial prematura 284470004 

JEB Junctional escape beat 426995002 

JPT Junctional premature beat 251164006 

VB Bigeminismo Ventricular 11157007 

VEB Ventricular escape beat 75532003 

VPB Contração Ventricular Prematura 17338001 

VET Trigeminismo de Escape Ventricular 251180001 

AFIB Fibrilhação Auricular 164889003 

AF Flutter Atrial 164890007 

SA Arritmia Sinusal 427393009 

SAAWR Ritmo Atrial Migratório do Nodo Sinusal 195101003 

5.5 Pré-processamento dos dados 

Dada a natureza sensível dos dados na área da saúde, é fundamental adotar medidas cautelosas durante a limpeza e 

remoção de valores em falta, assegurando que o significado clínico dos dados seja preservado. 

5.5.1 Recolha dos sinais ECG 

Foi realizada a leitura dos sinais ECG presentes no dataset, os quais incluem as 12 derivações convencionais de um 

eletrocardiograma, correspondentes aos valores registados por elétrodos colocados em diferentes pontos do corpo. 

Cada registo encontrava-se originalmente armazenado num ficheiro individual, o que exigiu a agregação manual de 

todos os sinais num único DataFrame (uma estrutura de dados bidimensional, semelhante a uma tabela, composta 

por linhas e colunas), de forma a facilitar o seu processamento e análise.  
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A segunda derivação do sinal de ECG evidencia mudanças rápidas no sinal, como as associadas aos picos R, tendo isto 

em conta apenas utilizei os valores associados à 2º derivação dos ECGs [58]. Estes sinais foram armazenados, como 

uma lista de números decimais (floats) numa coluna de um DataFrame. Cada linha representa um registo diferente 

que é identificado de forma única pela coluna record_id. A Figura 26 mostra o sinal ECG do registo com o ID JS00004. 

 

5.5.2 Adição de informação clínica 

Cada registo no dataset era constituído por dois ficheiros distintos: um que continha o sinal de ECG e outro com 

informações clínicas adicionais. A este segundo ficheiro foram extraídos dados como a idade, o sexo do paciente e o 

diagnóstico clínico atribuído por especialistas, originalmente codificado segundo o sistema SNOMED-CT. 

Para facilitar a interpretação dos diagnósticos, esses códigos SNOMED-CT foram convertidos para siglas padronizadas 

correspondentes a cada condição clínica, utilizando uma tabela de mapeamento externa. Esta transformação teve 

como objetivo simplificar a leitura e análise dos dados durante as fases de processamento e modelação. Na Figura 27 

encontra-se o mesmo registo que na figura anterior, mas agora com as respetivas informações clínicas. 

 

5.5.3 Deteção dos batimentos cardíacos (picos R) 

Foram testados três métodos diferentes para identificar os picos R dos sinais ECG: find_peaks da biblioteca Scipy, o 

algoritmo pan_tompkins e ecg_peaks da biblioteca NeuroKit2. Após uma comparação dos resultados, o método da 

NeuroKit2 foi o escolhido, por ter sido o que detetou o maior número de registos com frequências cardíacas dentro 

do intervalo entre 40 e 120 batimentos por minuto (BPM), intervalo considerado neste trabalho como a margem 

aceitável de BPM em repouso para um adulto saudável.  

A função ecg_peaks da NeuroKit2 deteta os picos R com base num algoritmo próprio da biblioteca, que identifica os 

complexos QRS através da análise da variação rápida da amplitude do sinal ao longo do tempo. Essa variação, 

conhecida como gradiante absoluto, permite detetar regiões onde o sinal muda de forma mais brusca, características 

típicas dos complexos QRS. Após localizar essas regiões, o algoritmo identifica os picos R como os valores máximos 

locais dentro desses segmentos [59]. 

Com base nos valores de BPM extraídos por este método, foram filtrados todos os registos cuja frequência cardíaca 

média se encontrava fora do intervalo, 40 a 120 BPM, por se considerarem fora do padrão fisiológico de repouso e 

potenciais sinais de deteção incorreta. A Figura 28 apresenta o mesmo registo da figura anterior, agora com os picos 

R assinalados ao longo do sinal ECG e com a respetiva frequência cardíaca (BPM) calculada com base nesses picos. 

Figura 26 - Exemplo de sinal 

Figura 27 - Exemplo de sinal com informação clínica 
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5.5.4 Cálculo de métricas do ritmo cardíaco 

Através dos picos R depois foram calculados os intervalos RR, permitindo extrair métricas de HRV, como: 

• Desvio padrão dos intervalos RR: É uma métrica clássica de variabilidade da frequência cardíaca [60].  

• Coeficiente de variação dos intervalos RR: Divisão do desvio padrão dos intervalos pela média dos mesmos 

[60].  

• Percentagem de intervalos RR consecutivos que diferem mais de 50 milissegundos (pNN50) e Root mean 

square of successive differences (RMSSD): Métricas utilizadas frequentemente em análise de HRV [60].  

• Assimetria dos intervalos RR (Skewness e kurtosis): Medidas estatísticas que avaliam o grau de 

concentração dos valores em torno da média. Ambas relevantes para análise de variabilidade [61]. 

A comparação entre os sinais representados nas Figuras 29 e 30 evidencia diferenças claras nas métricas extraídas, 

refletindo a regularidade ou irregularidade dos intervalos RR. O sinal da Figura 28, caracterizado por intervalos 

regulares, apresenta valores muito baixos nas métricas de variabilidade, como o STD (0.02), CV (0.01), PNN50 (0.00), 

RMSSD (0.02), Skewness (−0.60) e Kurtosis (−1.17), indicando uma frequência cardíaca estável e ritmada. Já o sinal da 

Figura 29 revela grande irregularidade nos intervalos RR, com um aumento nas mesmas métricas: STD (0.24), CV 

(0.32), PNN50 (0.82), RMSSD (0.35), Skewness (0.93) e Kurtosis (0.05), sugerindo variabilidade significativa entre 

batimentos e um padrão cardíaco menos regular. 

Figura 30 – Exemplo de sinal com intervalos RR regulares 

Figura 29 – Exemplo de sinal com intervalos RR irregulares 

Figura 28 - Exemplo de sinal com picos R detetados 



Identificação de Arritmias através de modelos de Machine Learning 

26 
 

5.5.5 Criação de coluna binária para presença de arritmias 

Foi adicionada uma nova coluna ao DataFrame chamada has_diagnosis, que indica se um determinado registo 

apresenta alguma das arritmias de interesse. Esta coluna assume o valor 1 (presença) ou 0 (ausência), com base na 

lista de diagnósticos associados a cada sinal. 

Foram considerados os seguintes tipos de arritmia presentes na tabela da secção 5.4 do relatório, as 13 condições 

indicam que os intervalos RR não são regulares. Esta classificação permitiu separar os dados entre casos positivos e 

negativos, o que foi essencial para o treino dos modelos de ML. 



Identificação de arritmias através de modelos de Machine Learning 

27 
 

 

 

Figura 31 - Exemplos de registos e os picos R detetados 
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5.6 Análise Exploratória dos Dados 

Após o pré-processamento foi realizada uma análise exploratória dos dados com o objetivo de identificar padrões, 

relações e características relevantes para o desenvolvimento do modelo de Machine Learning. 

Inicialmente, o conjunto de dados continha 45.150 registos. Após a filtragem de sinais com um número de picos R 

fora dos limites considerados fisiologicamente plausíveis, foram mantidos 39.681 registos válidos, o que corresponde 

a 87,89% do total. A média de picos R por registo foi de 12,06, o que equivale a uma frequência cardíaca média de 

72,36 batimentos por minuto (BPM), considerando que cada registo tem 10 segundos de duração. 

12.06 𝑃𝑖𝑐𝑜𝑠 𝑅 𝑒𝑚 10 𝑆𝑒𝑔𝑢𝑛𝑑𝑜𝑠 𝑋 60 𝑆𝑒𝑔𝑢𝑛𝑑𝑜𝑠

10 𝑆𝑒𝑔𝑢𝑛𝑑𝑜𝑠
=  72.36 𝑃𝑖𝑐𝑜𝑠 𝑅 𝑒𝑚 60 𝑠𝑒𝑔𝑢𝑛𝑑𝑜𝑠 (𝐵𝑃𝑀) 

Em relação aos diagnósticos, 11.356 registos apresentam pelo menos uma das arritmias consideradas, enquanto 

28.325 não apresentam nenhuma, resultando numa proporção de 28,62% de casos positivos. 

Importa referir que o objetivo inicial do projeto era detetar exclusivamente casos de fibrilhação auricular (FA), que 

representam apenas 3,94% dos diagnósticos no dataset. Este desequilíbrio é comum em contextos clínicos, mas 

representa um desafio significativo na construção de modelos de previsão, pois pode levar os algoritmos a favorecer 

a classe maioritária (ausência de FA). 

Para enfrentar este problema, foram consideradas duas abordagens: 

• Utilizar algoritmos com ajuste automático de pesos: Para compensar o desequilíbrio das classes, é possível 

recorrer a algoritmos de machine learning que permitem ajustar automaticamente os pesos atribuídos a 

cada classe durante o treino do modelo. Com a opção class_weight=balanced, o modelo penaliza mais 

fortemente os erros cometidos na classe minoritária (FA), forçando o algoritmo a prestar mais atenção aos 

exemplos menos representados.  

• Aplicar técnicas de undersampling: Consiste em reduzir a quantidade de exemplos da classe maioritária 

(casos sem AFIB) até igualar aproximadamente o número de exemplos da classe minoritária (casos com 

AFIB). Esta técnica de undersampling permite criar conjuntos de treino mais equilibrados, minimizando o 

viés dos modelos para a classe dominante. 

5.7 Modelos e Algoritmos Escolhidos 

Conforme descrito na secção 3.2, foram aplicados os algoritmos Random Forest, XGBoost, Logistic Regression e 

Support Vector Classifier (SVC). 

Antes do treino dos modelos, os dados foram preparados recorrendo a uma função de separação 

(split_features_target) que permite extrair as colunas relevantes do dataset. As variáveis selecionadas como features 

foram: rr_std, rr_cv, pnn50, rmssd, skewness e kurtosis, todas elas calculadas a partir dos intervalos RR dos sinais 

ECG. A coluna has_diagnosis foi utilizada como variável-alvo (target), indicando a presença ou ausência de um 

diagnóstico de arritmia. 

A separação entre treino e teste foi feita com uma proporção de 80/20, utilizando a função train_test_split da 

biblioteca Scikit-learn, com o parâmetro stratify=y para garantir que a proporção entre classes se mantinha 

semelhante em ambos os conjuntos. 

5.8 Abrangência 

A solução proposta integra conhecimentos adquiridos em diversas unidades curriculares do curso.  

Abaixo estão descritas as principais disciplinas e como os conceitos aprendidos serão utilizados: 

• Data Mining: Aplicação de técnicas de tratamento de dados, análise exploratória e desenvolvimento do 

modelo de machine learning. 

• Probabilidade e Estatística: Aplicação de conceitos como estatística descritiva, regressão linear e 

probabilidade para a análise dos dados clínicos e avaliação da variabilidade da frequência cardíaca. 

• Sistemas Móveis Empresariais: Integração do modelo de machine learning com a aplicação móvel 

existente, garantindo as funcionalidade e uma boa usabilidade nos dispositivos móveis. 

• Base de Dados: Estruturação dos dados clínicos para facilitar a análise e utilização eficiente pelo modelo. 
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• Algoritmia e Estrutura de Dados: Análise da complexidade computacional das tarefas envolvidas e 

implementação de soluções eficientes para processamento de dados e execução do modelo. 
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6 Método e Planeamento 

6.1 Planeamento Inicial 

O desenvolvimento do TFC foi organizado em fases, planeadas com base na metodologia de gestão de projeto e acompanhadas através de um cronograma Gantt. 

 

Figura 32 - Diagrama de Gantt 
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6.2 Análise Crítica ao Planeamento 

Inicialmente, foi feita uma proposta de um tema diferente para o TFC, foi submetida por iniciativa própria, sendo 

posteriormente aceite pela Professora Iolanda Velho. No entanto, surgiu a oportunidade de integrar o projeto 

AIMHealth [4], projeto coordenado pelo Dr. Luís Rosário, em colaboração com o Hospital de Santa Maria, o Instituto 

Superior Técnico e o ISCTE, o que representou uma mais-valia significativa para o enriquecimento do projeto, 

aumentando também a sua complexidade e exigência. 

Apesar de o objetivo central do projeto se manter, desenvolver um modelo de Machine Learning para auxiliar na 

deteção de arritmias cardíacas, o plano inicial era mais ambicioso: criar um modelo capaz de detetar apenas os casos 

de fibrilhação auricular (FA) com base em sinais de fotopletismografia (PPG) recolhidos por uma aplicação móvel 

previamente desenvolvida, e integrá-lo diretamente nessa aplicação. No entanto, devido à dificuldade em aceder a 

bases de dados públicas com sinais PPG rotulados para FA, não foi possível avançar com essa abordagem. 

Como alternativa viável, foi decidido focar o trabalho no desenvolvimento de um modelo de Machine Learning 

baseado em sinais de ECG de curta duração, com foco na variabilidade da frequência cardíaca (HRV) e não apenas 

nos casos de FA devido ao desequilíbrio dos dados. 

Apesar da alteração do tipo de dados utilizados, de sinais PPG para ECG, os princípios metodológicos aplicados neste 

projeto poderão futuramente ser adaptados para desenvolver um modelo semelhante baseado em PPG. Este modelo 

poderá então ser integrado na aplicação móvel do projeto AIMHealth, tirando partido da infraestrutura já existente 

e aproximando-se do objetivo inicial de detetar arritmias de forma acessível e remota.  
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7 Resultados e Discussão 

7.1 Resultados das Análises e comparação dos modelos 

Para avaliar o desempenho dos modelos desenvolvidos, foram realizados três tipos distintos de treino: com os dados 

originais, com os dados equilibrados utilizando técnicas de ponderação de classes, e com under sampling para 

equilibrar as classes. Em cada cenário, foram aplicados os algoritmos Random Forest, Logistic Regression, Support 

Vector Classifier (SVC) e XGBoost, amplamente utilizados em problemas de classificação binária. Abaixo apresentam-

se os resultados obtidos para cada configuração, incluindo as principais métricas de avaliação: F1 Score, Precisão 

(Precision), Sensibilidade (Recall), Especificidade (Specificity), Acurácia (Accuracy) e AUC (Área sob a Curva ROC). 

Tabela 2 - Resultados dos modelos treinados com dados originais 

Treino com Dados 
Originais 

F1 Score Precisão Sensibilidade Especificidade Acurácia AUC 

Logistic Regression 0.7838 0.8034 0.7651 0.925 0.8793 0.8451 

Random Forest 0.8999 0.909 0.8909 0.9643 0.9433 0.9276 

SVC 0.8202 0.8691 0.7766 0.9532 0.9027 0.8649 

XGBoost 0.8946 0.9029 0.8865 0.9618 0.9403 0.9242 

 

Tabela 3 - Resultados dos modelos treinados com dados equilibrados 

Treino com Dados 
Equilibrados 

F1 Score Precisão Sensibilidade Especificidade Acurácia AUC 

Logistic Regression 0.7838 0.7127 0.8706 0.8595 0.8627 0.8651 

Random Forest 0.8977 0.9042 0.8914 0.9622 0.9419 0.9268 

SVC 0.8295 0.7797 0.8861 0.8898 0.8959 0.8929 

XGBoost 0.9 0.8772 0.9241 0.9482 0.9413 0.9361 

 

Tabela 4 - Resultados dos modelos treinados com dados Under Sampling 

Treino com Dados Under 
Sampling 

F1 Score Precisão Sensibilidade Especificidade Acurácia AUC 

Logistic Regression 0.7833 0.7119 0.8706 0.8589 0.8623 0.8648 

Random Forest 0.8935 0.8536 0.9373 0.9357 0.9361 0.9365 

SVC 0.822 0.7691 0.8826 0.8939 0.8907 0.8882 

XGBoost 0.8906 0.8535 0.9311 0.936 0.9346 0.9336 

 

Analisando os resultados obtidos, observa-se um claro destaque para os modelos Random Forest e XGBoost, que, 

independentemente do tipo de tratamento aplicado aos dados, apresentaram sempre valores de F1 Score muito 

próximos de 0.9. Além disso, mantiveram valores elevados de AUC, entre 0.92 e 0.94, o que demonstra uma excelente 

capacidade de distinguir corretamente entre as classes. Esta consistência evidencia a robustez e eficácia destes 

modelos para o problema em estudo.  

Por outro lado, os modelos Logistic Regression e SVC apresentaram desempenhos consistentemente inferiores em 

todas as métricas. Tanto em F1 Score (variando de 0.7833 a 0.8295) quanto em AUC (variando de 0.8451 a 0.8929), 

estes modelos ficaram aquém dos algoritmos baseados em árvores. Embora a Regressão Logística e o SVC sejam 

algoritmos mais simples, a sua menor capacidade para capturar padrões complexos presentes neste tipo de dados, 

especialmente em cenários de dados desequilibrados, é evidente nos resultados. 

Apesar da aplicação de diferentes abordagens de treino (utilizando dados originais, dados equilibrados e under 

sampling), os resultados obtidos revelaram poucas variações significativas entre si. Esta estabilidade pode ser 

justificada pelo facto de os dados originais já apresentarem uma distribuição relativamente equilibrada, com 28,62% 
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dos registos a corresponderem a casos positivos (diagnóstico presente). Assim, o impacto dos vários métodos de 

treino foi atenuado, permitindo que os modelos treinados com os dados originais já atingissem métricas de 

desempenho elevadas. 

O modelo que apresentou o melhor desempenho global foi o XGBoost, treinado com o parâmetro 

class_weight='balanced' (correspondente aos Dados Equilibrados). Esta configuração alcançou um F1-score de 

0.9000, o mais elevado entre todas as configurações testadas, demonstrando um equilíbrio excecional entre precisão 

e sensibilidade na identificação das arritmias. O seu AUC de 0.9361 também foi notavelmente alto, apenas 

ligeiramente inferior ao obtido pelo modelo Random Forest com under sampling, que atingiu um AUC de 0.9365. No 

entanto, esse modelo registou um F1-score de 0.8935, o que representa uma diferença mais expressiva em 

comparação com o XGBoost, destacando este último como a solução com melhor equilíbrio geral entre precisão e 

sensibilidade. 

Analisando as demais métricas, o XGBoost com class_weight='balanced' manteve consistentemente valores elevados: 

Precisão de 0.8772, Sensibilidade de 0.9241, Especificidade de 0.9482 e Acurácia de 0.9413. Contudo, é importante 

notar que o Random Forest com dados originais obteve picos ligeiramente superiores em algumas métricas: Precisão 

de 0.909, Especificidade de 0.9643 e Acurácia de 0.9433. Similarmente, o Random Forest com under sampling 

apresentou a Sensibilidade mais alta, com 0.9373. Apesar destas exceções pontuais, a performance do XGBoost com 

dados equilibrados demonstrou a performance mais robusta e completa em todo o conjunto de métricas, alcançando 

o F1-score mais alto e um AUC muito competitivo, validando a sua escolha como o modelo mais adequado e com 

melhor equilíbrio geral para o problema em estudo. 

A matriz de confusão apresentada na Figura 33 permite visualizar o desempenho do modelo XGBoost na classificação 

de dois grupos: pacientes sem diagnóstico (classe 0) e com diagnóstico (classe 1). 

• Verdadeiros Negativos (5364): Corresponde ao número de casos em que o modelo previu corretamente 

que o paciente não apresentava diagnóstico de arritmia. 

• Falsos Positivos (293): Refere-se aos casos em que o modelo previu incorretamente que o paciente tinha 

um diagnóstico, quando na realidade não tinha. 

• Falsos Negativos (172): São os casos em que o modelo não detetou a presença de arritmia, mesmo estando 

presente. 

• Verdadeiros Positivos (2093): Casos em que o modelo identificou corretamente a presença de arritmia, o 

que confirma a eficácia do modelo na deteção de diagnósticos positivos. 

Ao todo o modelo foi testado com 7922 casos, dos quais 7457 foram corretamente classificados e apenas 463 

incorretamente classificados, estes valores correspondem a uma taxa de Accuracy de 94,13%.  

A tabela 5, resume os principais indicadores de desempenho do modelo XGBoost para cada uma das classes: 

 

 

Figura 33 - Matriz de Confusão do modelo 
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Tabela 5 - Indicadores de desempenho modelo final XGBoost 
 

Precisão Sensibilidade f1-score 

0 Sem Diagnóstico 0.97 0.95 0.96 

1 Com Diagnóstico 0.88 0.92 0.90 

Classe 0 (Sem diagnóstico): 

• Precisão (0.97): Das previsões feitas como “sem diagnóstico”, 97% estavam corretas, o que indica uma taxa 

muito reduzida de falsos positivos. 

• Sensibilidade (0.95): O modelo foi capaz de identificar corretamente 95% dos casos realmente “sem 

diagnóstico”, demonstrando elevada sensibilidade nesta classe. 

• F1-score (0.96): Reflete um equilíbrio sólido entre precisão e recall, confirmando que o modelo é altamente 

eficaz na classificação dos casos negativos. 

 Classe 1 (Com diagnóstico): 

• Precisão (0.88): Das previsões atribuídas à classe “com diagnóstico”, 88% correspondiam efetivamente a 

pacientes com arritmia, indicando uma boa taxa de acerto. 

• Sensibilidade (0.92): O modelo identificou corretamente 92% dos casos reais com diagnóstico, um valor 

elevado e clinicamente relevante. 

• F1-score (0.90): Este resultado reforça a robustez do modelo mesmo na classe mais desafiante, onde a 

variabilidade é maior e a representação nos dados é menor. 

 

Os resultados apresentados demonstram um excelente desempenho do modelo XGBoost na tarefa de classificação 

binária (com ou sem diagnóstico). Ao utilizar as funções f1_score() e roc_auc_score() da biblioteca sklearn.metrics, o 

modelo obteve um F1-score geral de 0.900 e um AUC de 0.9361, o que indica um ótimo equilíbrio entre precisão e 

sebsibilidade. 

Em comparação com o modelo desenvolvido na 2ª entrega intermédia, que tinha como objetivo apenas a 

identificação de casos de Fibrilhação Auricular (FA), foi também utilizado o algoritmo XGBoost com o parâmetro 

class_weight='balanced'. Importa referir que, nessa fase, foram utilizados os mesmos dados de base, extraídos do 

mesmo dataset, com as mesmas métricas calculadas a partir dos intervalos RR (como o desvio padrão, o RMSSD, o 

PNN50, entre outras), e aplicando exatamente os mesmos métodos de deteção de picos e extração de características, 

bem como o mesmo pipeline de treino do modelo de machine learning. 

Tabela 6 - Indicadores de desempenho modelo 2ª entrega 
 

Precisão Sensibilidade f1-score 

0 Sem Diagnóstico 0.98 0.87 0.92 

1 Com Diagnóstico 0.17 0.66 0.27 

Apesar de ter existido consistência metodológica, os resultados demonstraram uma diferença substancial no 

desempenho, especialmente na classe “com diagnóstico”, onde o F1-score evoluiu de 0.27 para 0.90. Esta diferença 

justifica-se, em grande parte, pela representatividade limitada da classe “Com Diagnóstico” (neste caso com FA) na 

2ª entrega: o número de amostras com esse diagnóstico era bastante reduzido, o que limitava a capacidade do 

modelo de aprender padrões relevantes para identificar esses casos. Além disso, a elevada precisão de 98% na 

identificação dos casos “sem diagnóstico” revela que o modelo da 2ª entrega estava fortemente direcionado para 

essa classe, falhando na deteção de casos positivos. Isso é evidenciado pela baixa precisão de apenas 17% nos casos 

com FA, indicando que, quando o modelo previa a presença de diagnóstico, raramente estava correto, o que reforça 

a conclusão de que o modelo não estava devidamente treinado para identificar casos com diagnóstico. 

Por outro lado, o modelo final desenvolvido neste trabalho incluiu todos os diagnósticos relacionados com os 

intervalos RR irregulares, abrangendo não apenas a FA, mas também outras condições clínicas relevantes, o que 

resultou numa base de dados mais rica, equilibrada e informativa, permitindo um treino mais robusto e eficaz. 
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Consequentemente, a capacidade preditiva do modelo aumentou de forma significativa, sobretudo nos casos 

positivos. 

7.2 Interpretação dos resultados 
Os resultados obtidos com o modelo XGBoost, utilizando class_weight=balanced, revelaram um desempenho 

bastante robusto, com um F1-score global de 0.90 e uma AUC (Área Sob a Curva ROC) de 0.9361. Este valor de AUC 

indica que o modelo tem uma excelente capacidade discriminativa para distinguir entre sinais com e sem arritmia, o 

que reforça a fiabilidade da abordagem baseada na análise dos intervalos RR. Estes resultados demonstram um 

equilíbrio sólido entre a precisão e o recall, essenciais para tarefas clínicas sensíveis onde é fundamental minimizar 

tanto os falsos negativos como os falsos positivos. 

Este desempenho representa uma evolução notável face ao modelo anterior desenvolvido na 2ª entrega, que se 

focava apenas na deteção de casos de fibrilhação auricular (FA) e obteve um F1-score de apenas 0.27 para a classe 

positiva. A expansão do objetivo para identificar um conjunto mais abrangente de arritmias revelou-se decisiva para 

aumentar a aplicabilidade prática e a robustez do modelo. 

Quando comparado com os estudos existentes na literatura, como os de Voisin et al. (2018) [53], que obtiveram 

AUCs na ordem dos 0.95 utilizando redes neuronais com sinais PPG, os resultados deste trabalho situam-se dentro 

de uma margem muito competitiva.  

Por fim, os resultados suportam a relevância da hipótese inicial: que é possível detetar padrões patológicos fiáveis 

utilizando apenas os intervalos entre batimentos cardíacos (RR). Com o acesso a sinais PPG de qualidade ou com a 

futura integração com a aplicação AIMHealth, será possível evoluir para uma ferramenta completa de rastreio 

remoto, acessível e validada clinicamente, contribuindo para a prevenção ativa de doenças cardiovasculares com 

recurso à tecnologia. 

7.3 Limitações da Análise 
Durante o desenvolvimento deste trabalho, foi identificada uma limitação significativa no que diz respeito à 

disponibilidade de dados clínicos reais, elemento essencial numa investigação com aplicação médica. A utilização de 

dados reais é crucial para garantir a fiabilidade dos resultados e a sua eventual aplicabilidade em contextos clínicos. 

Inicialmente, a intenção era trabalhar com sinais PPG, dado o seu carácter não invasivo e o potencial de recolha 

contínua através de dispositivos wearables. No entanto, verificou-se que os datasets públicos de PPG são 

extremamente escassos, sobretudo quando se exige uma anotação clínica fidedigna, como o diagnóstico de 

fibrilhação auricular (FA) ou de qualquer outro tipo de arritmia. 

Mesmo ao expandir a pesquisa para sinais de ECG, dados mais comuns em datasets púbicos, foi necessário aplicar 

critérios rigorosos de seleção, pois não seria viável utilizar qualquer dataset disponível. Muitos dos sinais 

encontrados apresentavam uma baixa frequência de amostragem, o que compromete a qualidade da 

representação gráfica do sinal e dificulta a deteção precisa dos picos R, essenciais para o cálculo das métricas RR 

utilizadas no modelo. 

Outro critério fundamental foi a exigência de que os sinais tivessem um diagnóstico médico associado, garantindo 

que o modelo fosse treinado com base em dados rotulados de forma correta e confiável. Para além disso, era 

necessário que cada registo tivesse uma duração mínima de sinal, de forma a permitir a extração de padrões 

significativos. Sinais muito curtos geram menos picos R, tornando as métricas menos robustas e o padrão de ritmo 

cardíaco mais difícil de identificar. 

Estas limitações levaram à reformulação parcial do objetivo inicial do projeto. Embora o propósito inicial fosse a 

deteção de fibrilhação auricular através de sinais PPG, a escassez de dados adequados obrigou à utilização de sinais 

ECG e à expansão do diagnóstico para outros tipos de arritmias cardíacas. Ainda assim, o trabalho manteve 

alinhamento com a tese inicial, explorando o potencial de modelos de Machine Learning na deteção automática de 

padrões anómalos no ritmo cardíaco, mesmo que com outro tipo de dados. 
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8 Conclusão 

8.1 Conclusão 

O presente Trabalho Final de Curso abordou o desenvolvimento de um modelo de Machine Learning com o objetivo 

de detetar arritmias cardíacas com base em sinais de eletrocardiograma (ECG), com o objetivo de, futuramente, 

integrar um modelo semelhante numa aplicação móvel de monitorização da saúde cardíaca. Este TFC responde à 

necessidade clínica, realização de diagnósticos de condições cardíacas potencialmente graves, precoces e acessíveis. 

O projeto teve como ponto de partida a definição do problema clínico e científico, seguindo-se um levantamento e 

estudo dos conceitos fundamentais da eletrofisiologia cardíaca e das principais métricas de variabilidade da 

frequência cardíaca (HRV). Um passo determinante foi a procura de um dataset com dados reais e adequado, que 

permitisse extrair intervalos RR com qualidade suficiente para análise. Após a escolha do dataset, foi realizada uma 

fase de pré-processamento e tratamento dos sinais, incluindo a deteção dos picos R e o cálculo de métricas 

estatísticas sobre a variabilidade dos intervalos RR, estas métricas serviram de base para a criação dos modelos, 

permitindo transformar os sinais fisiológicos em dados estruturados compreensíveis pelos algoritmos, o que foi 

essencial para que os modelos fossem capazes de reconhecer padrões e tomar decisões com base nesses dados. 

Diversos algoritmos de classificação binária foram implementados e avaliados, incluindo Random Forest, Logistic 

Regression, SVC e XGBoost. Os resultados obtidos demonstraram que os modelos XGBoost e Random Forest foram 

consistentemente os mais eficazes, alcançando, no melhor cenário, um F1-score de 0.9000 e uma AUC de 0.9361, 

valores que indicam uma excelente capacidade de distinguir entre pacientes com e sem diagnóstico de arritmia. Estes 

dados confirmam a hipótese inicial de que é possível detetar padrões patológicos a partir dos intervalos RR, utilizando 

apenas métricas estatísticas derivadas desses sinais. 

Apesar de não ser ainda viável para aplicação clínica direta, o modelo mostrou-se eficaz e promissor, abrindo portas 

à sua futura integração na aplicação AIMHealth. Esta integração permitiria a monitorização remota e em tempo real 

da saúde cardíaca, com recurso a sinais fisiológicos recolhidos de forma não invasiva, pelo próprio utilizador da 

aplicação. 

O projeto permitiu, ainda, a consolidação prática de conhecimentos adquiridos ao longo do curso, cruzando áreas 

como probabilidade e estatística, data mining e inteligência artificial, e demonstrando como estas áreas podem ser 

integradas na resolução de problemas reais com impacto na saúde pública. Este projeto representa um ponto de 

partida sólido para investigações futuras, com elevado potencial de inovação e aplicabilidade no setor da saúde. 

8.2 Trabalhos Futuros 

Apesar dos resultados promissores obtidos até ao momento, este TFC pode representar apenas o início de um 

percurso mais amplo de investigação e desenvolvimento em parceria com o Hospital Santa Maria o IST e o ISCTE. 

Neste sentido, identificam-se várias linhas de trabalho futuro que poderão dar continuidade e aprofundar este 

projeto, com vista à sua validação científica, aplicabilidade clínica e eventual implementação prática. 

• Acesso a dados PPG de qualidade clínica:  

Uma das principais limitações deste trabalho foi a indisponibilidade de conjuntos de dados públicos com 

sinais PPG (Photoplethysmography) com qualidade clínica suficiente. Para que um modelo de Machine 

Learning seja eficaz na deteção de arritmias com base em PPG, é fundamental que os dados utilizados 

cumpram vários critérios: devem ter uma frequência de amostragem adequada, apresentar mínimos níveis 

de ruído, e estar anotados com diagnósticos médicos fiáveis, preferencialmente confirmados por 

profissionais de saúde.  

Embora existam alguns repositórios de investigação e bases de dados de instituições médicas internacionais 

com este tipo de informação, o seu acesso está muitas vezes condicionado por restrições éticas e legais, 

sendo necessário submeter um pedido formal de acesso, no qual se deve justificar a natureza do projeto, 

os objetivos científicos e os elementos envolvidos no estudo. Estes pedidos exigem tempo de aprovação e, 

por isso, não foram compatíveis com os prazos deste trabalho final de curso, que teve um calendário 

limitado ao ano letivo em vigor.  

Para trabalhos futuros, será fundamental iniciar este processo com antecedência, garantindo assim tempo 

suficiente para obter autorizações e integrar esses dados no desenvolvimento do modelo. O acesso a dados 

PPG de qualidade clínica permitirá, não só, retomar o objetivo original deste trabalho, a deteção de 
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fibrilhação auricular através de PPG, como também aumentar a relevância prática e científica da 

investigação, aproximando-a de uma possível aplicação real. Além disso, a utilização deste tipo de dados 

será essencial para validar a generalização do modelo e garantir a sua aplicabilidade em contextos reais, 

nomeadamente na futura integração com a aplicação móvel AIMHealth. 

• Integração com a aplicação móvel AIMHealth:  

Uma das direções mais promissoras para a continuação deste trabalho é a integração do modelo preditivo 

na aplicação móvel AIMHealth, atualmente em desenvolvimento no âmbito de um projeto mais alargado. 

A ideia passa por utilizar os sinais PPG recolhidos diretamente a partir da câmara do smartphone, uma 

abordagem inovadora que dispensa sensores médicos dedicados e permite a monitorização de sinais 

fisiológicos de forma acessível e contínua.  

A integração do modelo de ML com a aplicação tem como objetivo a deteção automática de arritmias 

cardíacas com base em padrões irregulares nos intervalos RR extraídos dos sinais PPG. Esta funcionalidade 

poderá notificar o utilizador em tempo real sempre que forem detetadas irregularidades compatíveis com 

possíveis arritmias, funcionando como uma ferramenta preventiva e de triagem, com especial utilidade na 

saúde de pessoas que não têm fácil acesso a Hospitais.  

No entanto, este avanço requer um modelo altamente fiável, validado clinicamente e com métricas de 

desempenho rigorosas, nomeadamente em termos de precisão, sensibilidade e especificidade. Sendo uma 

aplicação com impacto direto na área da saúde, o modelo deverá cumprir com elevados padrões éticos e 

regulamentares. Para tal, será essencial garantir que a aquisição dos sinais PPG seja feita em condições 

controladas (ex: iluminação estável, posição fixa da câmara), e que o modelo seja treinado com dados PPG 

de qualidade e devidamente rotulados, o que ainda representa um desafio a ultrapassar.  

Esta integração poderá permitir transformar a aplicação AIMHealth numa ferramenta de apoio ao 

diagnóstico clínico remoto, com potencial para reduzir a pressão sobre os serviços de saúde e capacitar os 

utilizadores no acompanhamento proativo da sua saúde cardiovascular. 

• Validação clínica com dados reais:   

Um dos passos mais importantes para reforçar a credibilidade e aplicabilidade prática do modelo 

desenvolvido será a validação clínica com dados reais de pacientes. A possibilidade de utilizar registos 

provenientes do Hospital de Santa Maria, nomeadamente de pacientes acompanhados pelo Dr. Luís 

Rosário, representa uma oportunidade valiosa para testar o modelo em cenários reais e clínicos.  

Este processo permitiria não só avaliar o desempenho do modelo com novos dados, distintos dos usados 

no treino, mas também realizar uma comparação direta entre os diagnósticos emitidos pelo sistema de 

Machine Learning e os diagnósticos clínicos feitos por profissionais de saúde. Tal comparação possibilitaria 

validar a eficácia do modelo em contexto real, identificar potenciais limitações e refinar a sua capacidade 

preditiva com base em feedback médico.  

Adicionalmente, estes dados clínicos poderiam ser utilizados, caso existisse volume e qualidade suficientes, 

para criar um novo modelo mais específico, adaptado ao perfil dos pacientes do hospital, o que contribuiria 

para um sistema mais personalizado e eficaz. Esta colaboração entre áreas da saúde e da tecnologia 

reforçaria o valor científico do projeto e permitiria dar um passo em direção à integração de soluções 

baseadas em ML no apoio ao diagnóstico médico, com base em dados reais, validados e eticamente 

tratados. 

• Ajuste do modelo:  

Apesar dos bons resultados obtidos com modelos como o Random Forest e o XGBoost, uma linha de 

trabalho futuro será a exploração de outras arquiteturas de Machine Learning, nomeadamente redes 

neuronais artificiais e abordagens mais avançadas como redes neuronais recorrentes.  

Estas arquiteturas poderão permitir uma melhor captação de padrões complexos nos intervalos RR e um 

desempenho superior em contextos com dados ruidosos ou não lineares. Além disso, uma evolução natural 

do projeto será a transição de um modelo binário (com ou sem diagnóstico) para um modelo multiclasse, 

ou seja, um modelo classificador capaz de identificar especificamente o tipo de arritmia presente, como 

fibrilhação auricular, taquicardia ou bradicardia, a partir das métricas extraídas.  

Esta abordagem não só aumentaria a utilidade clínica do sistema, como também permitiria criar alertas 

mais específicos e personalizados para cada tipo de condição, contribuindo para uma triagem mais precisa 

e uma intervenção médica mais direcionada. O desenvolvimento destes classificadores exigirá, 

naturalmente, datasets mais amplos e detalhados, com diagnósticos precisos por tipo de arritmia. 
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