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Capítulo 1

Resumo
A presença de microplásticos nos ecossistemas aquáticos tem vindo a suscitar uma pre-
ocupação crescente a nível global, devido às potenciais consequências negativas tanto
para a vidamarinha como para a saúde humana. Estes pequenos fragmentos de plástico,
com dimensões inferiores a 5 milímetros, resultam da degradação de resíduos plásticos
maiores ou de fontes primárias, como partículas de cosméticos e fibras têxteis, e têm
uma ampla distribuição nos ambientes aquáticos. O seu impacto adverso inclui a inges-
tão por organismos aquáticos, que pode levar à bioacumulação e, consequentemente,
à entrada na cadeia alimentar humana, além de afetar a biodiversidade e os equilíbrios
ecológicos.

Neste trabalho final de curso, propõe-se o desenvolvimento de um modelo compu-
tacional para a deteção de microplásticos em amostras de água, utilizando tecnologias
avançadas de processamento de imagem e aprendizagem automática (machine lear-
ning). A metodologia baseia-se na aplicação de algoritmos de processamento de imagem
capazes de identificar e classificar automaticamente partículas de microplásticos, mini-
mizando assim custos e o tempo associados às técnicas tradicionais de análise manual.
Para alcançar este objetivo, o trabalho inclui a recolha e tratamento de dados visuais,
o treino de modelos de aprendizagem automática e a validação do desempenho destes
sistemas em cenários reais.

Espera-se que os métodos desenvolvidos neste estudo possam contribuir de forma
significativa para o avanço das estratégias de monitorização ambiental, fornecendo fer-
ramentas eficazes e escaláveis para a análise de microplásticos em diferentes tipos de
ecossistemas aquáticos, como rios, lagos, oceanos e ambientes costeiros. Este trabalho
poderá, assim, constituir um contributo importante para a compreensão e mitigação do
problema dos microplásticos, alinhando-se com os objetivos de sustentabilidade ambi-
ental e preservação da saúde pública.

Palavras-chave: Microplásticos, Impacto ambiental, Ingestão, Bioacumulação, Proces-
samento de imagem, Aprendizagem automática, Sustentabilidade, Monitorização ambi-
ental, Ecossistemas aquáticos, Poluição plástica
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Abstract
The presence of microplastics in aquatic ecosystems has become an increasingly global
concern due to their potential negative impacts on marine life and human health. These
small plastic fragments, measuring less than 5 millimetres, originate from the degradation
of larger plastic waste or primary sources such as cosmetic particles and textile fibres
and are widely distributed across aquatic environments. Their adverse effects include
ingestion by aquatic organisms, leading to bioaccumulation and subsequent entry into
the human food chain, in addition to harming biodiversity and ecological balance.

This final project proposes the development of a computational model for detecting
microplastics in water samples using advanced image processing techniques and ma-
chine learning. The methodology involves applying image processing algorithms capable
of automatically identifying and classifying microplastic particles, thereby reducing costs
and time associated with traditional manual analysis techniques. To achieve this goal,
the study encompasses data acquisition and visual processing, training machine learning
models, and validating the performance of these systems in real-world scenarios.

The methods developed in this research are expected to significantly advance en-
vironmental monitoring strategies by providing efficient and scalable tools for analysing
microplastics in various aquatic ecosystems, including rivers, lakes, oceans, and coastal
areas. This work aims to make a meaningful contribution to understanding and mitigating
the microplastics issue, aligning with environmental sustainability goals and public health
preservation.

Keywords: Microplastics, Environmental impact, Ingestion, Bioaccumulation, Image pro-
cessing, Machine learning, Sustainability, Environmental monitoring, Aquatic ecosystems,
Plastic pollution
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Estado da Arte
A utilização massiva de plásticos, particularmente os de uso único, tornou-se uma ca-
racterística marcante da era moderna, trazendo consigo impactos ambientais, sociais
e económicos alarmantes. Estima-se que metade de todo o plástico produzido global-
mente seja destinado a aplicações de uso único, como embalagens descartáveis, cuja
vida útil é efemeramente curta. Esses produtos, frequentemente fabricados a partir de
matérias-primas fósseis, são descartados em proporções alarmantes: apenas 10% do
plástico produzido é reciclado1, uma parte significativa acaba por poluir ecossistemas
terrestres e aquáticos.

O aumento exponencial da produção de plásticos nas últimas décadas intensificou
a crise ambiental associada a este material. Entre as décadas de 1970 e 1990, a ge-
ração de resíduos plásticos triplicou, e a tendência de crescimento continua alarmante.
Segundo as Nações Unidas, projeta-se que, até 2050, a produção global de plásticos
poderá ultrapassar 1.100 milhões de toneladas anuais [Pro20], caso os padrões de con-
sumo e produção atuais se mantenham. Adicionalmente, cerca de 36% de todo o plástico
produzido é destinado a embalagens, sendo que aproximadamente 85% deste volume
acaba em aterros sanitários ou é descartado de forma inadequada.

Essa crise é agravada pela contribuição dos sistemas fluviais, que atuam como vias
de transporte de resíduos plásticos para os oceanos. Estima-se que cerca de 1.000 rios
sejam responsáveis por até 80% das emissões plásticas fluviais globais, sublinhando a
importância de ações locais e regionais para mitigar impactos de escala global.

Dada a magnitude do problema, torna-se essencial compreender os métodos atuais
de monitorização e mitigação de microplásticos, bem como impulsionar o desenvolvi-
mento de soluções tecnológicas inovadoras. Estas iniciativas são cruciais para enfrentar,
de forma eficaz, um dos mais prementes desafios ambientais do século XXI.

3.1 Análise de Viabilidade Metodológica
A deteção de microplásticos em ecossistemas aquáticos tem evoluído significativamente
devido à crescente consciencialização sobre os seus impactos ambientais e na saúde
pública. Estudos recentes, como os de Campos-Lopez et al.[Cam+24], sublinham a re-
levância de metodologias automatizadas e precisas para identificar e quantificar micro-
plásticos, superando as limitações das técnicas tradicionais, geralmente morosas, dis-
pendiosas e suscetíveis a erros humanos.

Entre os avanços mais relevantes neste campo destaca-se o uso de técnicas de Pro-
cessamento Digital de Imagens (DIP), em conjunto com métodos avançados, como a
Análise de Dimensões Fractais (FDA) e os Métodos de Aproximação Polinomial (PA).
Estas abordagens melhoram significativamente a precisão na segmentação e classifica-
ção das partículas de microplásticos, otimizando resultados. Por exemplo, técnicas como
equalização de histogramas e filtros adaptativos reduzem o ruído nas imagens enquanto
preservam características essenciais das partículas, como contornos e texturas.

1United Nations Environment Programme (2021). From Pollution to Solution: A global assessment of
marine litter and plastic pollution. Nairobi.
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Ferramentas portáteis de microscopia digital têm igualmente impulsionado a capaci-
dade de realizar análises diretamente em campo. Estes dispositivos permitem a aquisi-
ção controlada de imagens de alta resolução, aumentando a fiabilidade e a eficiência dos
métodos de deteção.

Paralelamente, métodos baseados em aprendizagem automática, comoMáquinas de
Vetores de Suporte (SVM) e Redes Neuronais Convolucionais (CNN), têm demonstrado
elevado potencial na classificação automatizada de microplásticos. Estas técnicas são
particularmente eficazes na identificação de padrões complexos, como formas irregulares
e texturas diferenciadas. As CNNs destacam-se pela sua abordagem de aprendizagem
”end-to-end”, simplificando o fluxo de trabalho e reduzindo a necessidade de intervenção
manual.

Apesar dos progressos alcançados, subsistem desafios significativos. A variabilidade
nas formas e tamanhos dos microplásticos, aliada à heterogeneidade dos ambientes
aquáticos, exige métodos que combinem precisão, escalabilidade e robustez. Investiga-
ções futuras deverão concentrar-se no desenvolvimento de tecnologias multiespectrais e
sistemas em tempo real, promovendo soluções práticas para a monitorização ambiental
em larga escala.

Estes avanços metodológicos refletem a necessidade de abordagens multidisciplina-
res, integrando ciência dos materiais, computação e engenharia ambiental, para enfren-
tar os desafios associados aos microplásticos de forma sustentável e eficaz.

3.2 Métodos para Amostragem e Deteção de Microplásticos
em Água e Sedimentos

A deteção de microplásticos em ambientes aquáticos e sedimentares é um processo
complexo, condicionado pela ausência de protocolos uniformizados. Segundo Prata et
al. [Pra+19], esta falta de padronização compromete a representatividade e a compa-
rabilidade dos resultados. Esta secção aborda as etapas principais no tratamento de
amostras de água e sedimentos, destacando os avanços metodológicos e os desafios
ainda por superar.

3.2.1 Recolha de Amostras
A recolha de amostras constitui a primeira etapa, sendo determinante para garantir a
representatividade dos dados. A escolha do método depende do tipo de amostra (água
ou sedimento) e dos objetivos do estudo.

Para amostras de água, os métodos amplamente usados incluem:

• Redes de manta e neuston: Utilizadas para recolha de amostras em superfície
e sub-superfície. Redes de malha fina (100 μm) detetam concentrações até cem
vezes superiores, mas são mais suscetíveis a entupimentos devido a matéria orgâ-
nica.

• Bombas e sistemas de filtração: Ideais para amostras em locais costeiros ou
profundos. Contudo, há maior risco de contaminação cruzada.

• Garrafas de vidro: Reduzem a contaminação por plásticos, embora limitem o vo-
lume de amostras recolhidas.

Para amostras de sedimentos:

• Métodos manuais: Utilizam-se pinças para recolher partículas na superfície de
praias.
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• Equipamentos especializados: Dispositivos como grab samplers e box corers
são usados para recolha de sedimentos submersos e profundos.

• Representatividade: Requer volumes entre 25g e 3 kg e réplicas (mínimo de cinco
por local, segundo a MSFD2).

3.2.2 Separação e Digestão de Microplásticos
A separação e digestão de microplásticos são etapas essenciais para eliminar materiais
orgânicos e minerais sem danificar as partículas plásticas:

• Redução de Volume: Inclui filtração e malhas para remover partículas maiores.

• Separação por Densidade: Utiliza soluções como NaCl (1,2 g/cm³) para partícu-
las leves, enquanto NaI ou ZnCl2 (≥1,5 g/cm³) são mais eficazes para polímeros
densos.

Para a digestão, os métodos incluem:

• Agentes oxidantes: O H2O2 (30%) é amplamente utilizado pela sua eficiência.

• Métodos enzimáticos: Promissores, mas economicamente limitados.

• Métodos químicos: Uso de HNO3 ou NaOH que requerem cautela para evitar
degradação dos polímeros.

3.2.3 Identificação e Caracterização Química
A identificação de microplásticos combina inspeção visual e técnicas avançadas:

• Inspeção Visual: Simples e de baixo custo, mas sujeita a erros.

• Corantes: Como o Nile Red, que apresenta alta recuperação (>90%), embora exija
validação.

• Técnicas Avançadas: FTIR e Raman são ideais para caracterização química,
complementando métodos como Pyro-GC-MS.

3.2.4 Mitigação de Contaminação Cruzada
Para reduzir contaminações durante o processamento:

• Usar equipamentos de vidro ou metal.

• Evitar roupas sintéticas.

• Filtrar soluções e manter amostras cobertas.

• Trabalhar em ambientes controlados, como capelas de exaustão.
2A EU Marine Strategy Framework Directive foi criada para proteger o ecossistema marinho e a biodiver-

sidade, fundamentais para as atividades económicas e sociais relacionadas com a saúde e o meio marinho.
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3.2.5 Necessidade de Padronização
A padronização de protocolos é apontada como uma prioridade essencial para a inves-
tigação na área de microplásticos. Conforme analisado por Prata et al. [Pra+20], esta
necessidade abrange

• Tamanhos de malha ou filtro.

• Volumes mínimos de amostras.

• Procedimentos claros de separação e digestão.

• Métodos validados para identificação química e visual.

A uniformização de metodologias permitirá maior comparabilidade entre estudos e
uma compreensão mais aprofundada do impacto ambiental dos microplásticos.
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Identificação do Problema
O presente Trabalho Final de Curso (TFC) tem como objetivo o desenvolvimento de um
modelo computacional inovador para a deteção de microplásticos em amostras de água,
abordando as limitações associadas aos métodos tradicionais e contribuindo para a mo-
nitorização ambiental. Este trabalho procura explorar a aplicação de algoritmos de ma-
chine learning e processamento de imagem, com vista a desenvolver uma abordagem
que aumente não apenas a precisão, mas também a eficiência e a escalabilidade do
processo. Assim, pretende-se disponibilizar ferramentas mais robustas que possam ser
aplicadas na investigação científica e na gestão ambiental.

A poluição por microplásticos emergiu como uma das maiores ameaças ambientais
das últimas décadas, com impactos profundos nos ecossistemas aquáticos e potenciais
riscos para a saúde humana (Thompson et al., 2004). Definem-se os microplásticos
como partículas plásticas com um diâmetro inferior a 5 mm1, geralmente resultantes da
degradação de plásticos maiores. Estas partículas são facilmente transportadas pelas
correntes de água, acumulando-se em rios, lagos e oceanos, o que as torna um problema
ambiental global.

O impacto adverso dos microplásticos nos ecossistemas aquáticos está amplamente
documentado (Cox et al., 2019). Estas partículas podem ser ingeridas por organismos
aquáticos, causando danos à biodiversidade e comprometendo as cadeias alimentares,
com potenciais consequências para a saúde humana. Além disso, os microplásticos
podem atuar como vetores de poluentes químicos, exacerbando os efeitos tóxicos nos
organismos e nos ecossistemas.

A deteção e quantificação de microplásticos apresentam, contudo, desafios signifi-
cativos. Os métodos tradicionais, como a filtragem química e a espectroscopia no infra-
vermelho (FTIR), são reconhecidos pela sua precisão, mas também pela morosidade,
elevados custos e incapacidade de lidar com grandes volumes de amostras. Adicio-
nalmente, a diversidade de formas, tamanhos e composições químicas das partículas
dificulta ainda mais os processos analíticos.

Neste contexto, este TFC propõe uma abordagem automatizada baseada em técni-
cas de ciência de dados, incluindo machine learning e processamento de imagem, para
melhorar a precisão e a eficiência na deteção de microplásticos em diferentes ambientes
aquáticos. Espera-se que esta metodologia forneça uma base sólida para uma monitori-
zação ambiental mais abrangente e eficaz.

4.1 Enquadramento
A deteção de microplásticos evoluiu substancialmente nas últimas décadas, com méto-
dos físicos e químicos tradicionais a desempenharem um papel crucial. Contudo, estas
técnicas apresentam limitações em termos de tempo, custos e capacidade de análise de
grandes volumes de amostras. Em particular, a deteção de partículas com dimensões
reduzidas ou estruturas complexas continua a ser um desafio.

1Agência Portuguesa do Ambiente (APA). (2024). Microplásticos.
https://apambiente.pt/residuos/microplasticos
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Com o avanço da ciência de dados, surgiram novas possibilidades para otimizar e
automatizar este processo. Modelos computacionais baseados em machine learning e
processamento de imagem oferecem uma alternativa promissora, permitindo maior pre-
cisão, eficiência e escalabilidade na análise. Assim, conforme ilustrado na Figura 4.1,
existem diversas abordagens analíticas atualmente disponíveis para a determinação de
microplásticos no ambiente, que englobam desde métodos tradicionais a técnicas inova-
doras baseadas em inteligência artificial.

Figura 4.1: Panorama das possibilidades de métodos analíticos para a determinação de
microplásticos no ambiente [24].

Comparar estas abordagens inovadoras com os métodos tradicionais é essencial
para compreender as suas vantagens, limitações e impacto potencial na monitorização
ambiental. Segue-se, na Tabela 4.1, uma análise comparativa entre os métodos conven-
cionais e as abordagem automatizada proposta neste TFC.
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Tabela 4.1: Comparação de Métodos de Deteção de Microplásticos

Método Vantagens Desvantagens

Filtragem e
Separação Física

Simplicidade operacional.
Possibilidade de aplicação em
campo.

Demorado para grandes volu-
mes.
Limitações na deteção de partí-
culas muito pequenas.

Inspeção Visual Simples e acessível para partí-
culas maiores.
Não requer equipamento especi-
alizado.

Subjetivo e dependente da ex-
periência do operador.
Ineficaz para partículas peque-
nas ou transparentes.

Microscopia
Óptica/Eletrónica

Visualização detalhada de partí-
culas.
Alta resolução para microplásti-
cos pequenos.

Custos elevados.
Demorado e ineficiente para
grandes volumes.
Requer equipamentos sofistica-
dos.

Espectroscopia
Infravermelha (FTIR)

Alta precisão na identificação de
polímeros.
Eficaz para partículas muito pe-
quenas.

Equipamento caro.
Procedimento moroso e não es-
calável.

Espectroscopia
de Raman

Sensibilidade molecular.
Identificação detalhada de partí-
culas.

Equipamento complexo e caro.
Pode exigir preparação especí-
fica de amostras.

Pirólise-GC-MS Alta precisão na análise quí-
mica.
Útil para polímeros complexos.

Técnica decompõe termica-
mente as partículas
Custo elevado.
Exige elevado conhecimento
técnico.

Modelo Computacional
(Machine Learning)

Automatização do processo.
Capacidade para analisar gran-
des volumes de dados.
Aprendizagem contínua com no-
vos dados.

Necessita de grandes quantida-
des de dados etiquetados.
Requer recursos computacio-
nais.

Processamento
de Imagem

Deteção de partículas pequenas
e transparentes.
Processo repetível e escalável.

Depende da qualidade das ima-
gens e dos dados de entrada.
Menor precisão para identificar
polímeros específicos.

As abordagens convencionais utilizadas na deteção de microplásticos, embora re-
conhecidas pela sua elevada precisão analítica, revelam limitações substanciais no que
respeita à escalabilidade, à eficiência temporal e à exigência de recursos técnicos e hu-
manos. Em contraste, as metodologias baseadas em técnicas de processamento de
imagem e aprendizagem automática evidenciam um potencial acrescido, destacando-se
pela sua capacidade de automação, reprodutibilidade e eficiência na análise de gran-
des volumes de dados. Neste contexto, a adoção da estratégia metodológica proposta
neste trabalho justifica-se plenamente, na medida em que responde de forma eficaz aos
desafios associados à monitorização ambiental em larga escala.

14



Deteção de Microplásicos

Capítulo 5

Benchmarking
5.1 Métodos para Processamento de Imagem
Nos últimos anos, a deteção de objetos consolidou-se como uma das áreas fundamentais
no campo da inteligência artificial, com aplicações diversificadas em sectores como se-
gurança, saúde, transportes e finanças. Um dos algoritmos mais destacados nesta área
é o You Only Look Once (YOLO), reconhecido pela sua capacidade de realizar deteção
de objetos em tempo real de forma eficiente e precisa [Red+16].

5.1.1 Revisão da Literatura sobre o YOLO
A evolução do algoritmo YOLO (YouOnly LookOnce) tem sido amplamente documentada
na literatura, destacando-se pela sua eficácia na deteção de objetos em tempo real. Um
estudo notável é o de Jiang et al. [Jia+22], que realiza uma análise abrangente das
diferentes versões do YOLO, abordando as melhorias incrementais introduzidas em cada
iteração, como a deteção em múltiplas escalas, o uso de redes residuais e a otimização
para cenários de tempo real. Além disso, o estudo compara o desempenho do YOLO com
outras metodologias baseadas em Redes Neurais Convolucionais (CNNs), evidenciando
as vantagens do YOLO em termos de eficiência e precisão.

As versões mais recentes do YOLO introduziram avanços significativos:

• YOLOv11: Esta versão apresenta uma arquitetura aprimorada com melhorias no
backbone e no neck, resultando numa extração de características mais eficiente.
Além disso, alcança uma maior precisão média (mAP) com menos parâmetros em
comparação com versões anteriores, mantendo a eficiência computacional.

• YOLOv12: Introduz mecanismos de atenção avançados, como o módulo de aten-
ção de área (A2) e o R-ELAN (Redes de Agregação de Camadas Eficientes com
Resíduos), que melhoram a capacidade de modelagem e a eficiência computacio-
nal. Esta versão demonstra melhorias significativas na precisão, mantendo veloci-
dades de inferência competitivas, tornando-a adequada para aplicações em tempo
real.

5.1.2 Diferenças entre o YOLO e RNN’s Tradicionais
Uma diferença essencial entre o YOLO e as CNNs tradicionais reside na abordagem
para a deteção de objetos. Enquanto as CNNs convencionais se concentram na classifi-
cação, o YOLO trata a deteção como um problema de regressão, prevendo diretamente
as caixas delimitadoras (bounding boxes) e as probabilidades de cada classe a partir
de uma única imagem. Esta abordagem elimina a necessidade de múltiplas passagens
ou regiões de interesse, comuns nas técnicas tradicionais, e possibilita uma deteção em
tempo real.

Além disso, o YOLO processa a imagem inteira numa única passagem pela rede,
utilizando uma codificação global que reduz os erros na deteção de objetos em segundo
plano.
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5.1.3 Métodos de Treino no YOLO
O treino do YOLO envolve várias etapas cruciais:

• As imagens de entrada são redimensionadas para tamanhos padronizados (224×224
píxeis inicialmente, seguidos de 448×448 píxeis para a deteção final).

• A configuração do modelo inclui a remoção da última camada de convolução e a
adição de três camadas com 1024 filtros, adaptando a rede à tarefa específica de
classificação.

• O treino decorre em duas fases: uma inicial, com imagens de baixa resolução,
para acelerar o processo, e outra, com imagens de alta resolução, para refinar a
precisão.

Técnicas como a normalização de lotes e a utilização de classificadores de alta resolução
contribuem para a eficácia do modelo.

5.1.4 Características de Velocidade do YOLO
A rapidez do YOLO advém da sua arquitetura simplificada, que permite a previsão direta
de caixas delimitadoras e categorias a partir de uma única imagem. O processamento
da imagem inteira numa única etapa elimina a necessidade de múltiplas fases, como as
exigidas por abordagens tradicionais, e melhora a eficiência temporal.

5.1.5 Contribuições Relevantes para a Deteção de Objetos

YOLO-Inception: Deteção de Objetos Pequenos em Fundos Complexos

O modelo YOLO-Inception, apresentado por Du et al [Du18], introduz uma arquitetura
semelhante ao Inception, utilizando núcleos de convolução em múltiplas camadas. Este
modelo melhora a precisão na deteção de objetos pequenos e agrupados, particular-
mente em fundos visualmente complexos.

Desempenho do YOLO-Inception:

• Precisão Média (mAP): 78,37%, superando o YOLO v3 na deteção de objetos
pequenos.

• Velocidade: Tempo de processamento de 22 ms por imagem, competitivo com o
YOLO v3.

YOLO Nano: Rede Convolucional Compacta para Deteção de Objetos

Com o crescente interesse por soluções eficientes para dispositivos com recursos limi-
tados, surgiram modelos compactos de redes neurais que priorizam a eficiência sem
comprometer significativamente a precisão. Nesse contexto, Wong et al. [Won+19] apre-
sentam o YOLO Nano, uma rede convolucional altamente otimizada para cenários com
restrições computacionais. Este modelo destaca-se por alcançar um equilíbrio notável
entre precisão, tamanho compacto e eficiência energética, tornando-o particularmente
adequado para aplicações em dispositivos móveis e sistemas embutidos.

Desempenho do YOLO Nano:

• Tamanho do Modelo: 4,0 MB, representando uma redução significativa no tama-
nho (15,1 vezes menor em comparação ao Tiny YOLO v2), o que facilita a sua
implementação em dispositivos com restrições de memória.
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• Precisão Média (mAP): 69,19% no conjunto de dados VOC 2007, demonstrando
um desempenho competitivo em termos de precisão, especialmente considerando
a sua compactação.

• Eficiência Energética: Altamente otimizado para dispositivos móveis e embutidos,
com baixo consumo de recursos, tornando-o ideal para aplicações em tempo real
em cenários com recursos computacionais limitados.

Esses avanços reforçam a relevância do YOLO Nano no campo da deteção de obje-
tos, destacando-se pela sua capacidade de equilibrar precisão e eficiência em aplicações
práticas, como sistemas móveis e embutidos que exigem desempenho confiável e eco-
nómico. Neste trabalho, o modelo desenvolvido baseia-se em arquiteturas da família
YOLO, mais especificamente nas versões YOLOv11 e YOLOv12, testadas em três vari-
antes distintas (nano, small e medium), permitindo avaliar o seu desempenho na deteção
de microplásticos.

5.1.6 Descrição dos Parâmetros de Treino
O processo de treino foi conduzido com um conjunto de parâmetros cuidadosamente
definidos, de forma a otimizar o desempenho dosmodelos e garantir a sua generalização.
O treino decorreu ao longo de 100 épocas1, permitindo ao modelo ajustar iterativamente
os seus pesos com base nos erros cometidos.

O algoritmo de otimização utilizado foi o Stochastic Gradient Descent (SGD)2, uma
abordagem amplamente adotada em redes neuronais.

O valor de weight decay foi fixado em 0,0002, contribuindo para a regularização do
modelo e controlo do sobreajustamento. A taxa de aprendizagem inicial (lr0) foi definida
como 0,01, com um fator de redução (lrf) de 0,1, seguindo uma programação cosine
learning rate, que permite uma redução gradual da taxa ao longo do treino.

Foram ainda aplicadas técnicas de data augmentation3, nomeadamente flip horizon-
tal (0,5), flip vertical (0,2), mixup (0,5) e auto augment, com o objetivo de aumentar a
variabilidade dos dados de entrada e, consequentemente, a robustez do modelo. O pa-
râmetro close mosaic, definido em 50, regula a suspensão progressiva da técnica mosaic
augmentation nas fases finais do treino.

O treino foi realizado com um batch4 size de 16. O parâmetro patience5, com va-
lor de 50, assegura a paragem antecipada do treino caso não se verifiquem melhorias
significativas no desempenho durante esse número de épocas consecutivas.

Importa referir que todos os modelos foram treinados sob as mesmas condições,
garantindo uma comparação equitativa e controlada entre as diferentes arquiteturas.

1Uma época corresponde a uma passagem completa por todo o conjunto de dados de treino.
2O Stochastic Gradient Descent (SGD) é um algoritmo de otimização que atualiza os pesos da rede com

base em pequenos subconjuntos aleatórios dos dados de treino (mini-batches), permitindo uma aprendiza-
gem eficiente e menos exigente em termos computacionais.

3O data augmentation consiste na aplicação de transformações aleatórias às imagens de treino (como
rotações, espelhamentos ou mistura de imagens), com o objetivo de aumentar a diversidade dos dados e
melhorar a capacidade de generalização do modelo.

4O batch size representa o número de amostras processadas antes da atualização dos pesos do modelo.
Valores mais elevados podem acelerar o treino, mas requerem mais memória.

5O parâmetro patience define o número máximo de épocas consecutivas sem melhoria no desempenho
(por exemplo, na perda de validação) antes da interrupção automática do treino.
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Deteção de Microplásicos

Capítulo 6

Viabilidade e Pertinência
Neste capítulo, procede-se à análise da viabilidade e pertinência do desenvolvimento de
um modelo para deteção em tempo real de microplásticos em ambientes marinhos, utili-
zando câmaras submersas e processamento automatizado de imagem. A integração de
Inteligência Artificial (IA) em sistemas de monitorização ambiental destaca-se pela sua
capacidade de processamento local (on-board), o que reduz substancialmente a neces-
sidade de transmissão constante de dados para servidores centrais. Esta característica
é particularmente relevante em ambientes aquáticos, onde as condições podem variar
rapidamente. O processamento em tempo real e a monitorização contínua permitem
a identificação precoce de focos de poluição por microplásticos, proporcionando dados
precisos que suportam ações corretivas imediatas.

A solução proposta visa apresentar um contributo inovador e sustentável, com poten-
cial para ultrapassar o âmbito académico, assegurando a sua continuidade e aplicação
prática em contextos reais.

Adicionalmente, a implementação de câmaras submersas em zonas costeiras e flu-
viais oferece uma análise detalhada das concentrações de microplásticos, contribuindo
para a criação de uma base de dados abrangente. Esta base de dados é essencial para
a formulação de políticas públicas eficazes e para o desenvolvimento de iniciativas ori-
entadas para a preservação ambiental.

6.1 Viabilidade
A viabilidade do modelo proposto foi analisada com base em critérios técnicos, económi-
cos e operacionais, de modo a garantir que a solução apresentada seja implementável e
utilizável em contexto real. A seguir, apresentam-se os principais aspetos dessa análise.

6.1.1 Viabilidade Técnica
O modelo proposto baseia-se na utilização de tecnologias acessíveis, como câmaras
digitais microscópicas de alta resolução e algoritmos de inteligência artificial treinados
para a identificação de microplásticos. As câmaras submersas podem ser instaladas em
boias de monitorização ou em infraestruturas costeiras, garantindo robustez suficiente
para operar em condições adversas. A integração de tecnologias de comunicação su-
baquática poderia assegurar a transmissão dos dados em tempo real para centros de
monitorização.

6.1.2 Viabilidade Económica
A análise económica preliminar sugere que o investimento inicial — que inclui a aquisição
de câmaras submersas, cabos Ethernet subaquáticos, sensores auxiliares (para medir
parâmetros como turbidez e temperatura) e a infraestrutura necessária para o proces-
samento de dados — é competitivo quando comparado com os métodos tradicionais de
recolha e análise laboratorial de amostras.

Além disso, o modelo proposto apresenta uma significativa redução nos custos ope-
racionais no longo prazo, uma vez que minimiza a necessidade de recolhas manuais
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frequentes e do transporte de amostras para análise laboratorial. Este fator, aliado ao
crescente interesse de instituições públicas e privadas em soluções inovadoras para mo-
nitorização ambiental — incluindo governos, organizações não governamentais e iniciati-
vas de responsabilidade corporativa— reforça substancialmente a viabilidade económica
e estratégica deste projeto. Conforme ilustrado nas Figuras 6.1 ,6.2, 6.3 e 6.4 são apre-
sentadas algumas imagens preliminares que exemplificam como um sistema básico de
deteção de microplásticos poderia ser implementado. Estas ilustrações oferecem uma
visão inicial dos componentes fundamentais que poderiam compor um dispositivo funci-
onal para monitorização ambiental.

Figura 6.1: Câmara microscó-
pica Accu-Scope SKYE

Figura 6.2: Cabos Ethernet
submersíveis

Figura 6.3: Ligação elétrica
submersível

Figura 6.4: Cage protetora
submersível

6.1.3 Viabilidade Operacional
A operacionalização do sistema envolve a integração simples entre hardware (câmaras e
sensores) e software (modelos de ML). A modularidade do modelo permite atualizações
tecnológicas e adaptações para diferentes ambientes marinhos.

Como ilustrado na Tabela 6.1, os métodos tradicionais demonitorização demicroplás-
ticos apresentam algumas limitações económicas e operacionais em comparação com o
modelo automatizado proposto.

Custo Inicial: Os métodos tradicionais requerem investimentos iniciais elevados de-
vido à aquisição de equipamentos laboratoriais especializados e à logística de recolha.
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Tabela 6.1: Comparação de Custos entre Métodos Tradicionais e Automatizados

Aspecto Métodos Tradicionais Modelo Automatizado

Custo Inicial Alto Moderado

Custo Operacional Alto Baixo

Escalabilidade Limitada Alta

Tempo de Processamento Lento Rápido

Em contrapartida, o modelo automatizado utiliza câmaras submersas e hardware aces-
sível, resultando assim num custo inicial moderado.

Custo Operacional: Os custos operacionais dos métodos tradicionais são significa-
tivamente elevados, sobretudo devido à mão de obra intensiva e ao transporte frequente
de amostras para laboratórios. O modelo automatizado reduz estes custos, permitindo
análises in situ e processamento local (on-board).

Escalabilidade: A abordagem tradicional enfrenta desafios de escalabilidade, uma
vez que depende de recursos humanos e logísticos que aumentam exponencialmente
com a área a ser monitorizada. Já o modelo automatizado é altamente escalável, pos-
sibilitando a instalação de múltiplas unidades em diferentes locais e a integração dos
dados em sistemas centralizados.

Tempo de Processamento: Nos métodos tradicionais, o tempo de processamento
é um fator crítico, pois as amostras precisam ser recolhidas, transportadas e analisadas
em laboratório. O modelo automatizado destaca-se pela capacidade de realizar proces-
samento em tempo real, otimizando a detecção de focos de poluição e permitindo assim
intervenções imediatas.

Esta análise evidencia as vantagens operacionais e económicas do modelo automa-
tizado, reforçando a sua viabilidade como uma alternativa eficiente e sustentável para a
monitorização de microplásticos em ambientes marinhos.

Adicionalmente, a questão da autonomia energética foi considerada, sendo possível
alimentar as câmaras submersas com painéis solares flutuantes ou baterias de longa
duração, garantindo uma operação contínua mesmo em locais remotos.

6.2 Pertinência e Relevância
A pertinência deste projeto está diretamente relacionada com a crescente preocupação
global acerca da poluição marinha por microplásticos, que afeta significativamente a bio-
diversidade, a saúde pública e a sustentabilidade dos ecossistemas marinhos. Estudos
indicam que os microplásticos, presentes em objetos do quotidiano como cigarros, rou-
pas e cosméticos, acumulam-se no ambiente, causando danos aos organismosmarinhos
e representando potenciais riscos para a saúde humana [UNR21].

A implementação do modelo proposto permitirá a identificação precoce de áreas críti-
cas afetadas por microplásticos em ambientes marinhos. Os dados obtidos serão funda-
mentais para o desenvolvimento de políticas públicas mais eficazes, apoio a iniciativas
de mitigação e aumento da conscientização pública sobre a gravidade deste problema. A
monitorização precisa e contínua é essencial para compreender a extensão da contami-
nação por microplásticos e para a formulação de estratégias de intervenção adequadas
[Ser21].

Ao fornecer informações detalhadas sobre a distribuição e concentração de micro-
plásticos, o projeto contribuirá para a proteção da biodiversidade marinha e para a pro-
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moção da saúde pública, alinhando-se com os objetivos de desenvolvimento sustentável
e preservação ambiental.

6.2.1 Impacto Ambiental
A implementação do modelo proposto contribui para a identificação precoce de zonas
críticas afetadas por microplásticos em ambientes marinhos. Os dados recolhidos po-
derão ser utilizados para aprimorar políticas públicas, apoiar iniciativas de mitigação e
sensibilizar a sociedade para a gravidade deste problema.

6.2.2 Relevância Política e Educativa
A relevância do projeto é reforçada por iniciativas globais como a campanha Mares Lim-
pos do Programa das Nações Unidas para o Meio Ambiente (PNUMA), que tem como
foco informar consumidores, impulsionar mudanças políticas e proteger o ambiente. Es-
tas iniciativas destacam a importância de ações coordenadas para conter os impactos
negativos dos microplásticos na saúde e na biodiversidade.

Além disso, o projeto alinha-se com as metas da Década da Ciência Oceânica1 para o
Desenvolvimento Sustentável, contribuindo para a aceleração de esforços na mitigação
da poluição e na preservação dos ecossistemas marinhos. Ao disponibilizar ferramen-
tas tecnológicas avançadas, o modelo proposto poderá apoiar campanhas educativas e
decisões políticas baseadas em dados confiáveis, promovendo mudanças significativas
tanto no comportamento humano quanto na gestão ambiental.

1A Década da Ciência Oceânica é uma iniciativa coordenada pela Comissão Oceanográfica Intergover-
namental da UNESCO (IOC/UNESCO), que atua como coordenadora global. A iniciativa é estruturada em
torno de dez desafios principais, incluindo o objetivo de alcançar ”um oceano limpo”, onde as fontes de po-
luição, como os microplásticos, sejam identificadas, reduzidas ou eliminadas. Para mais informações, vide
https://www.oceandecade.org.
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Deteção de Microplásicos

Capítulo 7

Metodologia
Este capítulo apresenta, de forma detalhada, a metodologia adotada para a realização
do ensaio de deteção de microplásticos em condições controladas.

7.1 Metodologia Experimental
A metodologia descrita foi integralmente implementada no decorrer do trabalho, tendo os
dados sido gerados em ambiente controlado através do processo experimental apresen-
tado. O presente estudo seguiu uma abordagem estruturada para simular um ambiente
aquático controlado, por forma a analisar a concentração de microplásticos. A metodo-
logia envolveu múltiplas etapas conforme descritas:

• Recipiente e Preparação do Meio Aquático: Foi utilizado um recipiente com ca-
pacidade de 3 litros, preenchido com água corrente. Este ambiente simula condi-
ções de meio aquático controlado, adequado para realizar o teste de concentração
de microplásticos.

• Fragmentação de Plásticos: Fragmentaram-se 5 gramas de rolhas de plástico
de garrafas de água, com ciclos de 2 minutos, de modo a garantir uma gama de
partículas de tamanho reduzido e heterogêneo. Este processo de fragmentação
visa simular, de maneira controlada, o desgaste natural ao longo do tempo, dos
plásticos em ambientes aquáticos.

• Incremento de Microplásticos: Foram realizadas adições sucessivas de micro-
plásticos ao recipiente, utilizando uma peneira por forma a impedir a entrada de
partículas com dimensões iguais ou superiores a 5 mm. Os incrementos foram re-
alizados em frações de 5 gramas (correspondendo aproximadamente a 2 rolhas de
garrafa), até alcançar um total de 25 gramas. Estas etapas foram executadas com
concentrações crescentes de 5, 10, 15, 20 e 25 gramas.

• Recolha de Amostras para Análise: A cada incremento, recolheu-se uma amos-
tra de 100 ml da água do recipiente utilizando para o efeito um copo esterilizado,
para posterior analise microscópica. Esta metodologia de recolha visa assegurar
que o processo possa ser replicável, e, que os resultados são consistentes.

• Captura de Imagens: Para cada nível de concentração (5g, 10g, 15g, 20g e 25g),
foram capturadas 100 imagens, utilizou-se para o efeito o microscópio digital TOM-
LOV DM9 com ecrã LCD de 7 polegadas, ampliação de 1000X e resolução de 6
Mp.

• Reintrodução das Amostras: Após a recolha de cada amostra de 100 ml, o con-
teúdo foi devolvido ao recipiente de 3 litros, assegurando que o volume total per-
manecesse constante ao longo do ensaio. Este procedimento foi repetido de forma
sistemática até que a concentração final de 25 gramas de microplásticos fosse atin-
gida.
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O procedimento seguido, conforme representado no fluxograma da Figura 7.1, per-
mite realizar uma análise sistemática de microplásticos sob diferentes condições de con-
centração, num ambiente controlado. Esta abordagem possibilitou a obtenção de um
conjunto de imagens adequado à avaliação do desempenho de modelos de deteção au-
tomática de microplásticos em amostras de água.

Após a criação do conjunto de imagens, procedeu-se à respetiva anotação manual
recorrendo à plataforma MakeSense1. Esta etapa teve como finalidade a criação de um
conjunto de dados anotado, fundamental para o treino supervisionado dos modelos de
aprendizagem profunda utilizados neste trabalho.

1MakeSense é uma plataforma online gratuita para anotação de imagens, utilizada para criar conjuntos de
dados anotados em tarefas de visão computacional. Disponível em: https://www.makesense.ai/. Acedido
em janeiro de 2025.
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Início

Preparação do Re-
cipiente (Água)

Fragmentação de
Plásticos (5 g)

Incremento de Micro-
plásticos no Recipiente

Recolha de Amostras (100 ml)

Captura de Ima-
gens (100 fotos)

Reintrodução das Amos-
tras no Recipiente

Concentração atingiu 25 g?

Fim

Não

Sim

Figura 7.1: Fluxograma do procedimento experimental para a deteção de microplásticos
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Deteção de Microplásicos

Capítulo 8

Solução Proposta
O presente Trabalho Final de Curso (TFC) concentra-se, nesta fase inicial, no desen-
volvimento de um algoritmo de processamento de imagem para a deteção automatizada
de microplásticos em amostras de água. A implementação da infraestrutura de hard-
ware, embora seja um componente relevante para a aplicação prática, ficará fora do es-
copo temporal deste trabalho e será proposta como uma etapa futura. Assim, o projeto
apresenta potencial para continuidade por outros investigadores ou alunos, que pode-
rão explorar a integração de uma estrutura física para aplicação em campo, ampliando o
impacto desta solução inicial.

8.1 Tecnologias Selecionadas

8.1.1 Processamento de Imagem e Machine Learning
A escolha do processamento de imagem como tecnologia central é justificada pela sua
eficácia na análise de dados visuais complexos, como as características morfológicas e
texturais dos microplásticos. Para isso, serão utilizados algoritmos baseados em Redes
Neuronais Convolucionais (CNNs), com foco em arquiteturas como o YOLO (You Only
Look Once), dada a sua comprovada eficiência em tarefas de deteção de objetos.

O processamento de imagem permite identificar partículas de microplásticos com pre-
cisão, mesmo em cenários de alta variabilidade, como diferentes tamanhos, formas, co-
res e transparências. As principais vantagens incluem:

• Precisão: Deteção robusta de partículas pequenas e irregulares.

• Escalabilidade: Capacidade de análise em larga escala.

• Automatização: Reduz a intervenção manual, otimizando o fluxo de trabalho ana-
lítico.

8.1.2 Plataformas de Desenvolvimento
Para a implementação e treino do algoritmo, serão utilizadas bibliotecas de machine le-
arning de código aberto, como TensorFlow1 e PyTorch2, agilizando o desenvolvimento
do modelo. Estas plataformas oferecem suporte robusto para o desenvolvimento de mo-
delos avançados e a integração com ferramentas de processamento de imagem.

Os conjuntos de dados utilizados para treino e validação do modelo incluirão ima-
gens de microplásticos capturadas em condições controladas conforme explanado no
fluxograma 7.1.

1TensorFlow é uma biblioteca de código aberto amplamente utilizada para a construção e treino de mo-
delos de machine learning e deep learning. Para mais informações, visite https://www.tensorflow.org/.

2PyTorch é uma biblioteca de código aberto voltada para computação científica e desenvolvimento de
redes neurais profundas. Para mais informações, visite https://pytorch.org/.
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8.1.3 Etiquetagem das Imagens
Uma etapa fundamental no desenvolvimento do modelo de processamento de imagem
é a criação de um conjunto de dados robusto e anotado com precisão. Para este fim,
foi utilizado o programa MakeSense, uma ferramenta open-source que se destaca pela
interface intuitiva e pelos recursos avançados que simplificam o processo de rotulagem
de imagens.

Na Figura 8.1, é apresentado um exemplo do processo de etiquetagem realizado no
MakeSense. Cada microplástico identificado nas imagens foi destacado e rotulado com
precisão utilizando caixas delimitadoras (bounding boxes) ou formas poligonais, depen-
dendo da complexidade da partícula. Este processo detalhado assegura que o conjunto
de dados gerado seja adequado para treinar modelos demachine learning com alto nível
de confiabilidade e desempenho. A plataforma também facilita a exportação dos da-
dos anotados em diversos formatos compatíveis com frameworks como TensorFlow e
PyTorch garantindo flexibilidade no desenvolvimento do modelo.

Figura 8.1: Exemplo do processo de etiquetagem de microplásticos utilizando a plata-
forma MakeSense. Cada microplástico identificado é destacado e rotulado com preci-
são, permitindo a criação de um conjunto de dados anotados para o treino de modelos
de machine learning.

8.1.4 Processo de Etiquetagem
O processo de etiquetagem segue os seguintes passos:

• Carregamento das Imagens: As imagens são carregadas no MakeSense, garan-
tindo a compatibilidade e qualidade dos dados.

• Rotulagem: As partículas de microplásticos são identificadas e delimitadas com
caixas delimitadoras (bounding boxes).

• Exportação dos Dados: Os dados anotados são exportados em formato YOLO,
necessário para treinar o modelo de machine learning.
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8.2 Justificação das Escolhas Tecnológicas
A decisão de iniciar o projeto pela componente de processamento de imagem reflete a
necessidade de estabelecer uma base sólida para a solução proposta. A escolha doMa-
keSense como ferramenta para a etiquetagem de imagens, fundamenta-se nos seguintes
critérios:

• Impacto Científico e Técnico: A utilização de análise e classificação demicroplás-
ticos baseada em imagens representa um avanço significativo na compreensão da
extensão da poluição marinha. Esta abordagem proporciona dados mais precisos
e abrangentes, apoiando o desenvolvimento de estratégias eficazes de mitigação
e preservação ambiental.

• Flexibilidade e Compatibilidade: A ferramentaMakeSense suporta formatos am-
plamente utilizados em projetos de machine learning, como COCO JSON, Pascal
VOC e YOLO, e permite integração direta com frameworks populares, como Ten-
sorFlow e PyTorch.

• Adaptabilidade Futura: Os algoritmos desenvolvidos nesta fase poderão ser ajus-
tados para diferentes ambientes e integrados a sistemas de hardware em fases
posteriores do projeto, garantindo escalabilidade e flexibilidade na aplicação prá-
tica.

8.3 Aplicação das Áreas Científicas e Disciplinas
O desenvolvimento do algoritmo de processamento de imagem envolve conhecimentos
de várias áreas científicas e disciplinas do curso, nomeadamente:

• Ciência de Dados e Machine Learning: Aplicação de técnicas avançadas para a
deteção de microplásticos.

• Computação: Implementação e otimização de algoritmos para análise de imagens.

8.4 Perspetivas Futuras
Embora o foco imediato deste TFC seja o desenvolvimento de um algoritmo de proces-
samento de imagem eficiente para a deteção de microplásticos, o projeto apresenta um
horizonte de expansão que inclui a integração de uma infraestrutura de hardware em
fases futuras. Esta evolução visa combinar o modelo computacional com dispositivos
físicos, como câmaras digitais microscópicas e sensores auxiliares, para permitir a apli-
cação prática em ambientes marinhos e fluviais.

A implementação do componente hardware não será abordada no âmbito temporal
deste trabalho, mas constitui uma oportunidade promissora para a continuidade do pro-
jeto. Este avanço poderá complementar a análise computacional com dados recolhidos
em tempo real, promovendo uma solução completa e escalável para a monitorização
ambiental.

Além disso, a adaptação do sistema às necessidades específicas de diferentes ambi-
entes e a integração com plataformas de monitorização em tempo real serão áreas estra-
tégicas a explorar. A perspetiva de transformar esta solução numa ferramenta acessível
e replicável reforça o seu potencial impacto, alinhando-se com os objetivos de desenvol-
vimento sustentável e preservação ambiental.
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Deteção de Microplásicos

Capítulo 9

Calendário
9.1 Planeamento Detalhado
Com base nos progressos e desafios identificados, o plano de trabalho foi ajustado para
priorizar atividades críticas e garantir a conclusão do TFC dentro do prazo estipulado. As
etapas principais incluem:

• Desenvolvimento doAlgoritmo de Processamento de Imagem: Iniciar omodelo
utilizando abordagens de machine learning, com foco em aumentar a precisão na
deteção de microplásticos.

• Validação com Dados Reais: Recolher dados adicionais, incluindo imagens simu-
ladas e reais, para melhorar a robustez do modelo.

• Documentação Técnica: Preparar relatórios intermediários e a versão final do
relatório, detalhando os resultados alcançados, desafios e perspetivas futuras.

9.2 Cronograma
A Figura 9.1 apresenta o cronograma em formato Gantt, detalhando as atividades de
forma sequencial e destacando as dependências entre tarefas. Este planejamento visual
ajuda a monitorizar o progresso e a identificar possíveis atrasos ou necessidades de
ajuste.

Figura 9.1: Cronograma Gantt do plano de trabalho remanescente.
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9.3 Acompanhamento e Reavaliação
Dada a natureza do projeto, o progresso será monitorizado continuamente para garantir o
cumprimento dos prazos e a qualidade dos resultados. O cronograma será revisto perio-
dicamente para acomodar novas descobertas ou desafios, promovendo uma abordagem
flexível e adaptativa.

9.4 Conclusão
Este capítulo apresentou uma estrutura clara e coerente das atividades planeadas para
a conclusão do Trabalho Final de Curso (TFC), com especial ênfase na identificação
de tarefas críticas, na definição de prazos exequíveis e na gestão eficiente do tempo. O
cronograma delineado, complementado por uma abordagem de acompanhamento contí-
nuo e reavaliação periódica, visa assegurar a concretização dos objetivos estabelecidos,
mesmo perante eventuais imprevistos ou dificuldades.

Adicionalmente, o trabalho desenvolvido foi estruturado de forma a garantir a sua con-
tinuidade, caso venha a ser retomado por outros estudantes no futuro. Esta perspetiva
de sustentabilidade e transferência de conhecimento reforça o valor académico e prático
do projeto, assegurando que o esforço investido poderá gerar benefícios prolongados
para a comunidade académica.
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Deteção de Microplásicos

Capítulo 10

Resultados
10.1 Enquadramento
Este capítulo apresenta os resultados obtidos no processo de deteção de microplásticos
com recurso aos modelos YOLOv11 e YOLOv12, nas suas variantes nano (n), small (s)
e medium (m). A análise incide sobre um conjunto de métricas de desempenho relevan-
tes, nomeadamente a precisão (precision), a sensibilidade (recall), a média de precisão
(mAP@0.5), bem como aspetos relacionados com a eficiência computacional, como o
número de parâmetros e os GFLOPs. O objetivo principal é avaliar a eficácia e a vi-
abilidade de cada variante na identificação de microplásticos em diferentes contextos
ambientais.

10.1.1 Parâmetros de Treino do Modelo
A Tabela 10.1 apresenta os principais parâmetros definidos para o processo de treino
dos modelos. Estes foram cuidadosamente selecionados com o intuito de maximizar o
desempenho durante a fase de aprendizagem e garantir resultados consistentes na va-
lidação, tendo em consideração as características específicas do problema em estudo.
Importa referir que todos os modelos, independentemente da arquitetura utilizada (YO-
LOv11 ou YOLOv12, nas variantes nano, small e medium), foram treinados sob as mes-
mas condições e com os mesmos parâmetros, assegurando uma base de comparação
justa e controlada entre os diferentes resultados obtidos.

Parâmetro Valor
Épocas 100
Patience 50
Tamanho de imagem (640, 480)
Batch size 16
Weight decay 0,0002
Otimizador SGD
Taxa de aprendizagem inicial (lr0) 0,01
Fator de redução de LR (lrf) 0,1
Mixup 0,5
Flip vertical (flipud) 0,2
Flip horizontal (fliplr) 0,5
Close mosaic 50
Auto augment Verdadeiro
Cosine LR Verdadeiro

Tabela 10.1: Parâmetros de treino do modelo

10.1.2 Justificação dos parâmetros de treino
Os parâmetros definidos para o treinamento dos modelos, apresentados na Tabela 10.1,
foram selecionados com base em boas práticas em Deep Learning e tendo em consi-
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deração as exigências específicas da tarefa de deteção de microplásticos. Segue-se a
justificação, ponto por ponto, das escolhas efetuadas:

• Épocas (100): tempo suficiente para permitir a convergência do modelo, sem pro-
longar excessivamente a execução. Combinado com o critério de interrupção an-
tecipada.

• Patience (50): permite terminar o treino quando não há melhoria ao fim de 50 épo-
cas, evitando sobreajuste.

• Tamanho da imagem (640 × 480): bom equilíbrio entre detalhe visual e custo com-
putacional.

• Batch size (16): valor compatível com os recursos da GPU, garantindo estabilidade
no treino.

• Weight decay (0,0002): regularização que ajuda a prevenir sobreajuste.

• Otimizador (SGD): escolha robusta e eficaz para tarefas de deteção de objetos com
YOLO.

• Taxa de aprendizagem inicial (lr0 = 0,01): valor adequado para iniciar o treino de
forma eficiente.

• Fator de redução de taxa (lrf = 0,1): evita que a taxa de aprendizagem se reduza
demasiado rapidamente.

• Mixup (0,5): técnica de aumento de dados que promove a generalização.

• Flip vertical (0,2) e flip horizontal (0,5): aumentam a diversidade dos dados em
termos de orientação.

• Auto augment (verdadeiro): introduz transformações automáticas que enriquecem
os dados de treino.

• Cosine LR (verdadeiro): ajusta a taxa de aprendizagem de forma gradual, favore-
cendo a convergência.

A seleção destes parâmetros visou alcançar um equilíbrio entre desempenho, capa-
cidade de generalização e viabilidade computacional, garantindo que os modelos fossem
otimizados para a tarefa de deteção de microplásticos em cenários diversos.

10.2 Desempenho dos Modelos
A Tabela 10.2 resume os principais resultados obtidos pelas variantes dos modelos YO-
LOv11 e YOLOv12. São apresentadas asmétricas de precisão, sensibilidade, mAP@0.5,
número de parâmetros, complexidade computacional (medida em GFLOPs) e a época
em que se verificou o melhor desempenho durante o treino.

Modelo Precision Recall mAP@0.5 Época (melhor) Parâmetros (M) GFLOPs
YOLOv11-n 0.869 0.75 0.827 92 2.58 6.3
YOLOv11-s 0.77 0.73 0.798 79 9.41 21.3
YOLOv11-m 0.76 0.696 0.769 45 20.3 68.2
YOLOv12-n 0.831 0.715 0.795 100 2.55 6.3
YOLOv12-s 0.785 0.715 0.804 89 9.23 21.2
YOLOv12-m 0.831 0.702 0.795 100 20.1 67.7

Tabela 10.2: Análise Comparativa entre variantes YOLOv11 e YOLOv12
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Para complementar a análise numérica, a Figura 10.1 apresenta lado a lado duas visu-
alizações essenciais. À esquerda, encontram-se as métricas de desempenho (precisão,
recall e mAP@0.5), permitindo comparar a eficácia dos modelos. À direita, observa-se a
relação entre custo computacional (GFLOPs) e desempenho (mAP@0.5), fundamental
para avaliar a viabilidade de implementação prática.

(a) Desempenho dos modelos (b) Custo computacional dos modelos

Figura 10.1: Visualização comparativa do desempenho e eficiência dos modelos

10.2.1 Análise dos Resultados
A análise dos resultados evidencia variações significativas entre as diferentes arquite-
turas. O modelo YOLOv11-n destaca-se como o mais eficiente, apresentando a maior
precisão (0.869), o maior recall (0.75) e o melhor mAP@0.5 (0.827), com um número
reduzido de parâmetros e baixo custo computacional (6.3 GFLOPs).

As variantes small emedium de ambos os modelos apresentam desempenho inferior
ou semelhante, mas com um aumento substancial na complexidade. As versõesmedium,
em particular, atingem mais de 20 milhões de parâmetros e cerca de 68 GFLOPs, sem
ganhos proporcionais em desempenho.

Desta forma, verifica-se que as versões de menor dimensão não só são mais eficien-
tes, como também conseguem manter um desempenho competitivo, sendo, por isso, as
mais adequadas para aplicações práticas com restrições de hardware.

Adicionalmente, a Figura 10.2 fornece uma perspetiva qualitativa da capacidade pre-
ditiva do modelo. À esquerda (Figura 10.2a) encontram-se as anotações manuais utiliza-
das como referência, e à direita (Figura 10.2b) observam-se as previsões geradas pelo
YOLOv11-n durante a fase de validação. A elevada correspondência visual entre ambas
reforça a fiabilidade do modelo na deteção dos objetos-alvo.
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(a) Anotações manuais (b) Previsões do modelo

Figura 10.2: Visualização comparativa do Yolo11-n

10.3 Considerações Finais e Perspetivas Futuras
Para além da análise quantitativa, importa refletir sobre a aplicabilidade prática e as im-
plicações dos resultados obtidos. O modelo YOLOv11-n, pela sua elevada eficácia com-
binada com uma arquitetura leve e eficiente, revela-se especialmente adequado para
cenários de implementação em tempo real e em dispositivos com recursos computacio-
nais limitados, como aplicações móveis, câmaras inteligentes ou veículos autónomos.

A sua baixa complexidade, medida em apenas 6.3 GFLOPs, traduz-se numa maior
eficiência energética e menor tempo de inferência, características essenciais em ambien-
tes com restrições de consumo ou quando considerações como a latência seja um fator
crítico. Estes atributos fazem do YOLOv11-n uma opção equilibrada entre desempenho
e viabilidade prática.

Apesar das melhorias estruturais propostas na versão YOLOv12, os resultados expe-
rimentais não evidenciam ganhos significativos face à versão anterior. Este facto sugere
que, para este caso específico, a complexidade adicional introduzida não se traduz em
benefícios substanciais em termos de precisão ou robustez.

Contudo, importa salientar que os testes foram realizados em ambiente controlado,
com imagens obtidas em condições laboratoriais e fundo neutro. Em contextos reais,
como ambientes fluviais ou marinhos, a presença de partículas em suspensão, varia-
ções de luminosidade, movimento da água e objetos sobrepostos pode comprometer
significativamente a eficácia do modelo. A generalização para estes cenários exigirá va-
lidações adicionais, preferencialmente com dados recolhidos in situ, de modo a aferir a
robustez do sistema face às condições imprevisíveis do meio natural.

Como perspetiva futura, seria pertinente explorar:

• Técnicas de compressão de modelos, como quantization e pruning, aplicadas às
variantes small e medium, com o objetivo de reduzir a complexidade mantendo ou
melhorando o desempenho;

• A generalização dos modelos em cenários com maior diversidade de condições
ambientais, como variações de iluminação, oclusões ou fundos complexos;

• A transferência do modelo para outros domínios de aplicação, avaliando a sua ro-
bustez e capacidade de adaptação através de fine-tuning com novos conjuntos de
dados;
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• A monitorização do desempenho em tempo real em dispositivos físicos, de forma
a validar a eficácia observada em ambiente de validação.

Estas linhas de investigação permitiriam não só reforçar a aplicabilidade do modelo
em contextos reais, como também contribuir para o desenvolvimento de soluções mais
eficientes e versáteis no domínio da deteção automática de objetos.
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Deteção de Microplásicos

Capítulo 11

Anexos
11.1 Resultados Visuais Adicionais
Nesta secção apresentam-se exemplos complementares de previsões realizadas pelos
modelos, com o objetivo de ilustrar diferentes casos observados durante a fase de vali-
dação.

Imagens de Microplásticos - 5gr

As imagens seguintes correspondem a fragmentos de microplásticos recolhidos a par-
tir de uma amostra com 5 gramas, recolhidas e documentadas no âmbito do presente
estudo. Estas amostras ilustram a diversidade morfológica e cromática observada nas
partículas analisadas.

Figura 11.1: Amostra de microplásticos –
Exemplo 1

Figura 11.2: Amostra de microplásticos –
Exemplo 2
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Imagens de Microplásticos - 10gr

Figura 11.3: Amostra de microplásticos –
Exemplo 1

Figura 11.4: Amostra de microplásticos –
Exemplo 2

Imagens de Microplásticos - 15gr

Figura 11.5: Amostra de microplásticos –
Exemplo 1

Figura 11.6: Amostra de microplásticos –
Exemplo 2

Imagens de Microplásticos - 20gr

Figura 11.7: Amostra de microplásticos –
Exemplo 1

Figura 11.8: Amostra de microplásticos –
Exemplo 2
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Imagens de Microplásticos - 25gr

Figura 11.9: Amostra de microplásticos –
Exemplo 1

Figura 11.10: Amostra de microplásticos –
Exemplo 2

11.1.1 Processo de Fragmentação dos Materiais
A preparação das amostras para análise envolveu a fragmentação prévia dos materiais
plásticos (rolhas de plástico), recorrendo para o efeito a um processador de alimentos.
A Figura 11.11 ilustra, à esquerda, o estado inicial do recipiente imediatamente antes do
início do processo de trituração, e à direita, o resultado final da fragmentação.

Após a fragmentação mecânica, obtiveram-se partículas com características morfo-
lógicas e tamanhos heterogéneos, compatíveis com o que se pretende para simulações
laboratoriais de microplásticos.

A triagem foi realizada manualmente com o auxílio de uma série de peneiros de malha
fina. Este procedimento permite a segregação das amostras em intervalos definidos,
inferiores a 5 mm, de acordo com a definição técnica de microplásticos.

A Figura 11.12 apresenta uma representação do processo de triagem, evidenciando
o manuseamento cuidadoso necessário para garantir a integridade das amostras e a
fiabilidade dos resultados. Este procedimento permitiu obter amostras adequadas para
posterior análise microscópica.

Figura 11.11: Etapas do processo de fragmentação das amostras plásticas: antes (es-
querda) e depois (direita) da trituração.
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Figura 11.12: Triagem das amostras fragmentadas com recurso a peneiros de malha fina.

11.1.2 Análise Microscópica
Com o intuito de caracterizar morfologicamente os microplásticos triados, foram recolhi-
das 100 imagens com recurso a ummicroscópio digital. A Figura 11.13 ilustra o processo
de captação e análise, evidenciando a preparação e observação das partículas.

Figura 11.13: Etapas do processo recolha de imagens
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