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Abstract

Cryptocurrency price forecasting is one of the most complex and rapidly evolving areas

in the field of time series modeling. The extreme volatility of cryptocurrency markets,

coupled with their reliance on multiple influencing factors—such as historical data, market

sentiment, trading volume, and external events (e.g., regulatory decisions or technological

advancements)—creates a uniquely challenging environment for predictive modeling.

Over the years, researchers have employed a wide range of approaches to tackle

this problem. Traditional statistical methods, such as ARIMA, provide a solid foundation

for modeling linear patterns but often fall short when dealing with the non-linear com-

plexities typical of cryptocurrency data. On the other hand, deep learning techniques,

including LSTM, GRU, and Transformers, have demonstrated significant improvements

in capturing these complex patterns and adapting to rapid market changes. Additionally,

hybrid models and the integration of alternative data sources—such as sentiment analy-

sis from social media or search engine trends—have emerged as cutting-edge methods

to enhance prediction accuracy.
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Resumo

A previsão de preços de criptomoedas é uma das áreas mais complexas e em rápida

evolução no campo da modelagem de séries temporais. A extrema volatilidade dos mer-

cados de criptomoedas, juntamente com a sua dependência de múltiplos fatores influen-

tes tais como dados históricos, sentimento de mercado, volume de negociação e eventos

externos (por exemplo, decisões regulatórias ou avanços tecnológicos) onde se cria um

ambiente de modelagem preditiva particularmente desafiador.

Ao longo dos anos, os investigadores têm utilizado uma vasta gama de abordagens

para enfrentar este problema. Métodos estatísticos tradicionais, como o ARIMA, forne-

cem uma base sólida para modelar padrões lineares, mas muitas vezes falham ao lidar

com as complexidades não lineares típicas dos dados de criptomoedas. Por outro lado,

técnicas de deep learning, como LSTM (Long Short Term Memories), GRU e Transfor-

mers, demonstraram melhorias significativas na captura desses padrões complexos e na

adaptação às rápidas mudanças do mercado. Além disso, modelos híbridos e a inte-

gração de fontes de dados alternativas como a análise de sentimento a partir de redes

sociais ou tendências de pesquisa em motores de busca têm surgido como métodos de

ponta para melhorar a precisão das previsões.
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1 - Identificação do Problema

A previsão de preços da Bitcoin é um desafio complexo que envolve múltiplos fatores.

Para lidar com essa complexidade, os modelos preditivos usados no mercado de crip-

tomoedas devem ser capazes de capturar padrões de longo e curto prazo, lidar com

grandes volumes de dados e adaptar-se a rápidas mudanças no comportamento do mer-

cado. Para atingir esses objetivos, a utilização de técnicas avançadas de machine le-

arning e deep learning tem sido cada vez mais essencial. Entre os modelos que têm

demonstrado um desempenho notável, destacam-se as redes neurais LSTM, os mode-

los Transformers, NBEATS, NHiTS, TFT, RNN e outros.

As redes neurais LSTM são um tipo de rede neural recorrente (RNN) projetada para

lidar com o problema de desvanecimento e explosão do gradiente, um problema comum

em RNNs tradicionais. Esse problema ocorre quando as redes tentam aprender depen-

dências de longo prazo, o que é especialmente relevante quando se trabalha com séries

temporais, como as de preços de criptomoedas. As LSTMs têm a capacidade de reter

informações por períodos mais longos, o que as torna ideais para capturar padrões de

longo prazo em dados financeiros. No contexto da previsão de preços da Bitcoin, as

LSTMs conseguem identificar padrões sazonais, tendências de preços de longo prazo e

influências externas que afetam o comportamento do mercado.

Essas redes neurais têm uma estrutura composta por células de memória que aju-

dam a armazenar e acessar informações de períodos anteriores, enquanto ajustam as

conexões para permitir que a rede aprenda com dados passados e se adapte ao com-

portamento dos dados temporais. Com isso, as LSTMs podem ser eficazes na previsão

de preços, ajustando-se às flutuações e volatilidade da Bitcoin.

Os modelos Transformers apresentam uma arquitetura de rede neural que foi inicial-

mente desenvolvida para tarefas de processamento de linguagem natural, mas que tem

se mostrado extremamente poderosa também em tarefas de séries temporais. A princi-

pal inovação dos Transformers é o mecanismo de atenção, que permite que o modelo

foque em diferentes partes da entrada de forma dinâmica, ao invés de processar as in-

formações sequencialmente como as redes neurais tradicionais. Esse mecanismo de

atenção possibilita que o modelo capture relações entre elementos distantes na sequên-

cia de dados, sendo especialmente útil para dados financeiros, onde influências de longo

prazo e eventos externos podem afetar os preços.

Estes modelos podem ser ajustado para lidar com múltiplas variáveis de entrada,

como dados históricos de preços, volumes de transações, indicadores técnicos e até

mesmo fontes externas de dados, como notícias e sentimentos de redes sociais. No con-

texto da previsão de preços da Bitcoin, os Transformers podem integrar essas diversas

fontes de informação para melhorar a precisão das previsões, ajustando-se a padrões

dinâmicos que são comuns no mercado de criptomoedas.

Passando agora para modelos como o NBEATS e NHiTS que são abordagens ba-

seadas em desagregação e reconstrução hierárquica que têm ganhado destaque em

tarefas de previsão de séries temporais. O NBEATS é uma rede neural profunda que

utiliza um modelo de arquitetura de block-wise, permitindo que o modelo capture carac-

terísticas específicas dos dados temporais. O NBEATS não exige pré-processamento

de dados complexos e é capaz de lidar com séries temporais de diferentes frequências

e características.

O NHiTS, por outro lado, é uma extensão do NBEATS, introduzindo a ideia de redes

neurais hierárquicas para capturar de forma mais eficiente os padrões temporais de múl-
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tiplas escalas. Esses modelos têm sido particularmente eficazes para séries temporais

complexas, como a previsão de preços de ativos financeiros, onde as flutuações podem

ocorrer em múltiplos níveis e intervalos de tempo.

O TFT (Transformer for Time-Series Forecasting) é uma abordagem híbrida que com-

bina a capacidade de aprendizado profundo do Transformer com a automação no ajuste

de hiperparâmetros e na engenharia de características. O AutoTFT integra um meca-

nismo de atenção temporal com a capacidade de lidar com variáveis multivariadas, o que

significa que pode lidar não só com dados temporais, mas também com dados externos

que influenciam o comportamento do mercado. Além disso, o modelo ajusta automa-

ticamente os parâmetros para otimizar a previsão, sem a necessidade de intervenção

manual, o que torna o processo de modelagem mais eficiente e menos sujeito a erros

humanos.

Ao ser aplicado à previsão de preços da Bitcoin, o TFT pode processar grandes vo-

lumes de dados, identificar padrões complexos e integrar diferentes fontes de dados,

como o sentimento social ou indicadores macroeconomicos, para melhorar as previsões.

Este modelo permite que o sistema seja mais flexível e adaptável, ajustando-se rapida-

mente às mudanças no mercado e fornecendo previsões mais precisas, mesmo quando

o mercado está em períodos de alta volatilidade.

O modelo RNN é uma técnica de aprendizado automático que foca na otimização

automática dos hiperparâmetros de redes neurais recorrentes, o que pode ser crucial na

previsão de séries temporais, especialmente em mercados voláteis como o da Bitcoin.

Em vez de depender de ajustes manuais de parâmetros, o RNN usa algoritmos de otimi-

zação para encontrar a melhor configuração possível para as redes neurais, onde ocorre

uma economização de tempo e esforço do analista.

Este modelo se destaca pela sua capacidade de automatizar o processo de treina-

mento e ajustes, o que é vantajoso quando se lida com grandes volumes de dados e da-

dos dinâmicos. No caso da previsão de preços de Bitcoin, o RNN pode ser configurado

para otimizar continuamente o modelo à medida que novos dados se tornam disponíveis,

permitindo uma previsão mais precisa e eficiente.

A Integração de Sentimento Social e Dados Externos A previsão de preços de cripto-

moedas não se limita apenas aos dados históricos de preços e volumes de transações.

Fatores externos, como o sentimento social (extraído de notícias, redes sociais e fóruns)

e indicadores económicos globais, também desempenham um papel fundamental na de-

terminação do preço. Modelos modernos, como o TFT, permitem integrar essas fontes

externas diretamente no processo de previsão, aumentando a precisão do modelo.

O sentimento social pode influenciar de forma significativa o comportamento do mer-

cado, especialmente em mercados tão sensíveis à especulação e às notícias como o de

criptomoedas. Por exemplo, uma declaração de um regulador financeiro ou uma notícia

sobre a adoção de Bitcoin por uma grande empresa pode causar um aumento ou queda

no preço da criptomoeda. Ao integrar esses dados no modelo, é possível prever melhor

as reações do mercado a eventos externos.

A Importância da Robustez a Outliers Os mercados financeiros, especialmente os de

criptomoedas, são conhecidos por sua volatilidade extrema e por movimentos de preços

anômalos ou outliers. O tratamento adequado de outliers é crucial para evitar que esses

dados distorçam as previsões. Métricas como a HuberMQLoss, que combina caracte-

rísticas do erro quadrático médio (MSE) e do erro absoluto médio (MAE), são eficazes

nesse contexto, ajustando-se automaticamente ao grau de desvio de outliers. Isso ajuda

a suavizar os erros extremos e melhora a robustez do modelo, garantindo previsões mais

confiáveis mesmo em situações de alta volatilidade.

Conclusão O uso de modelos avançados de machine learning e deep learning, como

LSTM, Transformers, TFT e RNN, tem o potencial de melhorar significativamente a pre-
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cisão das previsões de preços da Bitcoin, lidando eficazmente com a volatilidade e com-

plexidade do mercado de criptomoedas. A integração de diferentes fontes de dados, a

automação do processo de modelagem e o tratamento adequado de outliers são funda-

mentais para criar modelos robustos e confiáveis que possam ajudar os investidores a

tomar decisões informadas em um mercado altamente dinâmico e imprevisível. A evolu-

ção desses modelos e sua capacidade de adaptação a mudanças rápidas nos padrões

do mercado torna-os uma ferramenta poderosa na previsão de preços e na gestão de

riscos no ambiente financeiro atual.
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2 - Estado de Arte

No âmbito deste Trabalho Final de Curso, propõe-se uma abordagem abrangente e me-

todologicamente robusta para resolver o problema da previsão dos preços da Bitcoin,

com recurso a técnicas avançadas de machine learning e deep learning. Estas soluções

foram selecionadas com base na capacidade de lidar com a complexidade inerente das

séries temporais financeiras e na sua aplicação comprovada em contextos semelhantes.

2.1 Modelo ARIMA

O modelo ARIMA (AutoRegressive Integrated Moving Average) constitui uma das abor-

dagens estatísticas mais consolidadas e amplamente utilizadas na modelação e previsão

de séries temporais. A sua relevância estende-se a inúmeros domínios, desde a macroe-

conomia à engenharia, passando pelos mercados financeiros e pela meteorologia, onde

a capacidade de capturar padrões temporais recorrentes e evolutivos é de importância

crítica. O ARIMA distingue-se pela sua aptidão para modelar dados que exibem com-

portamentos não estacionários — isto é, séries cuja média, variância ou estrutura de

autocorrelação variam ao longo do tempo — através de um processo de diferenciação

sistemática. Tecnicamente, este modelo é descrito por três parâmetros principais: p, d e
q. O parâmetro p representa a componente auto-regressiva (AR), onde o valor atual da

série depende linearmente de observações anteriores. O parâmetro d refere-se ao nú-

mero de vezes que a série deve ser diferenciada para se tornar estacionária, sendo esta

a componente de integração (I). Por fim, o parâmetro q designa a média móvel (MA), que

modela os erros de previsão como uma combinação linear dos erros passados. A mo-

delação ARIMA assenta, portanto, na premissa de que os dados se podem transformar

numa série estacionária, onde os componentes determinísticos e estocásticos estão su-

ficientemente estabilizados para permitir uma análise robusta. Uma das grandes forças

do ARIMA reside na sua versatilidade. Apesar de ser um modelo linear, é capaz de cap-

turar uma vasta gama de padrões temporais, nomeadamente tendências suaves, ciclos

curtos e correlações de curto prazo. No entanto, esta capacidade depende fortemente da

escolha apropriada dos parâmetros p,d e q, que geralmente são identificados através de

métodos heurísticos, como a análise dos gráficos de autocorrelação (ACF) e autocorrela-

ção parcial (PACF), ou através de critérios de informação, como o AIC (Akaike Information

Criterion) e o BIC (Bayesian Information Criterion). Apesar da sua popularidade, o ARIMA

apresenta algumas limitações, nomeadamente a sua incapacidade de lidar com efeitos

sazonais e não-linearidades. No contexto da previsão de preços de criptomoedas — um

domínio caracterizado por elevada volatilidade, forte presença de outliers e dependência

de múltiplos fatores exógenos — o ARIMA pode revelar-se limitado, especialmente se

aplicado de forma ingénua ou sem uma análise exploratória cuidada. Ainda assim, a sua

simplicidade interpretativa, aliada ao rigor matemático, faz do ARIMA uma ferramenta de

referência e um ponto de partida robusto para abordagens mais avançadas ou híbridas.

2.2 SARIMA

Omodelo SARIMA (Seasonal AutoRegressive Integrated Moving Average) constitui uma

extensão do tradicional modelo ARIMA, concebida para incorporar e modelar explicita-

mente padrões sazonais presentes em séries temporais. Esta evolução é de particular

relevância em contextos onde os dados manifestam variações cíclicas regulares ao longo
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do tempo — como, por exemplo, flutuações mensais, trimestrais ou anuais — cuja igno-

rância comprometeria gravemente a precisão e a fiabilidade das previsões. Assim, o

SARIMA representa uma solução robusta para modelar simultaneamente a componente

regular (não sazonal) e a componente periódica (sazonal) das séries temporais.

Matematicamente, o SARIMA é caracterizado por sete parâmetros: os três parâme-

tros clássicos do ARIMA (p,d,q) e quatro adicionais que descrevem a componente sa-

zonal (P,D,Q,s), onde s representa a periodicidade do ciclo (por exemplo, 12 para da-

dos mensais). O modelo completa-se com as componentes de autorregressão sazonal

(SAR), diferenciação sazonal (I) e média móvel sazonal (SMA), que trabalham em para-

lelo com as respetivas componentes não sazonais. Esta estrutura hierárquica permite ao

SARIMA capturar simultaneamente dependências de curto e de longo prazo, respeitando

a estrutura rítmica subjacente aos dados.

A implementação eficaz de um modelo SARIMA exige uma análise cuidadosa da

série, começando geralmente pela deteção de sazonalidade através de métodos gráficos

(como decomposição STL), autocorrelação e espectrogramas. Uma vez identificada a

sazonalidade, procede-se à diferenciação (estacionarização), seguida da estimativa dos

parâmetros ótimos com base em técnicas como a máxima verosimilhança, validação

cruzada temporal e otimização de métricas de penalização (AIC, BIC).

O SARIMA destaca-se não só pela sua capacidade de previsão em séries com pa-

drões sazonais pronunciados, mas também pela sua transparência interpretativa, especi-

almente valorizada em ambientes de decisão e controlo estatístico. No entanto, tal como

o ARIMA, o SARIMA é um modelo linear e univariado, o que significa que não considera

variáveis externas que possam influenciar a dinâmica da série — uma limitação relevante

em domínios como os mercados financeiros ou o comércio eletrónico. No caso das crip-

tomoedas, onde a volatilidade é exacerbada por fatores externos como sentimento do

mercado, eventos geopolíticos ou regulação, o SARIMA pode ser usado como modelo

de base, mas beneficia claramente de ser complementado com abordagens multivaria-

das ou híbridas.

Em suma, o SARIMA oferece uma poderosa estrutura para modelação de séries com

sazonalidade bem definida, mantendo a elegância matemática e interpretativa do ARIMA,

mas ampliando significativamente o seu campo de aplicação.

2.3 Modelos de Redes Neuronais Recorrentes (RNNs)

As Redes Neuronais Recorrentes (RNNs) são especialmente adequadas para a modela-

gem de séries temporais, uma vez que são desenhadas para processar dados sequen-

ciais. Entre os subtipos de RNNs, destaco as seguintes:

O Temporal Fusion Transformer (TFT) é uma arquitetura baseada em Transformers

que incorpora mecanismos de atenção para identificar relações complexas entre dife-

rentes pontos da série temporal. Ao contrário das RNNs e das LSTM, o TFT processa

os dados de forma não sequencial, permitindo capturar dependências de longo alcance

com elevado paralelismo computacional. A sua estrutura inclui um codificador e um des-

codificador, interligados por camadas de atenção multi-cabeças, redes feedforward e

mecanismos de normalização, que em conjunto produzem representações internas ricas

e dinâmicas. O TFT destaca-se ainda pela capacidade de fundir informação contextual,

integrando variáveis endógenas e exógenas — como preços históricos e sentimento so-

cial — num fluxo temporal coerente. A sua componente de automação para ajuste de

hiperparâmetros reduz significativamente o esforço manual. No entanto, este modelo

tem um custo computacional elevado e requer grandes volumes de dados para evitar

o sobreajustamento, o que pode ser um entrave em contextos com menos capacidade

computacional ou com datasets reduzidos.
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As RNNs tradicionais, embora mais simples, continuam a ser uma solução eficaz

para a aprendizagem de dependências sequenciais, especialmente em séries temporais

de curta duração. A sua estrutura permite ajustar automaticamente parâmetros como o

número de células e camadas, o que simplifica o processo de modelação. São ideais

para conjuntos de dados mais pequenos e menos complexos, beneficiando de um baixo

custo computacional. Contudo, enfrentam sérias dificuldades na captação de padrões

de longo prazo, e o seu desempenho tende a ser inferior quando aplicadas a dados com

alta não linearidade.

O modelo KAN surge como uma abordagem híbrida e altamente flexível, combinando

arquiteturas como LSTM e GRU com uma camada de automação para seleção de hiper-

parâmetros. É particularmente eficaz na integração de dados heterogéneos — incluindo

texto, séries temporais e indicadores externos — e destaca-se pela sua adaptabilidade.

Contudo, a flexibilidade do KAN tem como contrapartida um tempo de treino elevado,

decorrente da pesquisa intensiva de configurações ótimas, e uma maior complexidade

na interpretação dos seus resultados.

As redes LSTM (Long Short-Term Memory) são uma das evoluções mais popula-

res das RNNs, concebidas especificamente para ultrapassar o problema dos gradientes

desaparecidos. Utilizam três portas — entrada, esquecimento e saída — que regulam

o fluxo de informação, permitindo que a rede retenha ou esqueça dados ao longo do

tempo. São particularmente eficazes na identificação de padrões complexos e de longo

prazo, e revelam-se bastante robustas em contextos com elevada não linearidade. To-

davia, tal como os Transformers, as LSTM exigem maior capacidade computacional e

uma afinação precisa dos seus parâmetros para evitar o sobreajustamento.

O modelo NBEATS (Neural Basis Expansion Analysis) foi desenvolvido para realizar

previsões diretas com elevada precisão, através de uma estrutura composta por blocos

especializados em capturar padrões sazonais e tendências. A sua abordagem baseada

em decomposição torna-o altamente eficaz em séries com padrões cíclicos bem defi-

nidos. No entanto, a sua limitação prende-se com a dificuldade em integrar variáveis

exógenas, o que pode reduzir o seu desempenho em sistemas multivariados.

Por fim, o NHITS (Neural Hierarchical Interpolation Temporal Smoother) representa

uma evolução do NBEATS, com uma arquitetura hierárquica que permite interpolar séries

temporais emmúltiplas escalas. Esta capacidade torna-o particularmente adequado para

séries com elevada volatilidade e estruturas multi-escala, ao mesmo tempo que permite

um treino mais eficiente quando comparado com modelos como a LSTM. No entanto,

o NHITS é sensível à presença de outliers e ruído nos dados, e requer dados de alta

frequência para garantir uma performance otimizada.

Cada uma destas arquiteturas oferece vantagens e desvantagens distintas, e a sua

escolha deve ser cuidadosamente ponderada em função do tipo de série temporal, da

qualidade e quantidade de dados disponíveis, dos recursos computacionais existentes e

dos objetivos específicos do projeto de previsão.

2.4 Métricas:

A avaliação de modelos preditivos é um componente crucial de qualquer projeto de previ-

são, especialmente em contextos financeiros, onde a precisão e a robustez das previsões

têm impacto direto nas decisões tomadas pelos utilizadores. No âmbito deste trabalho, as

métricas de avaliação desempenham um papel central na análise comparativa do desem-

penho dos modelos implementados, permitindo identificar não apenas a sua capacidade

de prever valores futuros, mas também a forma como lidam com condições desafiado-

ras, como a presença de outliers ou a elevada volatilidade característica do mercado de

criptomoedas.
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A escolha das métricas deve refletir a complexidade dos dados e os objetivos espe-

cíficos do projeto. No caso da previsão de preços da Bitcoin, é essencial utilizar métricas

que avaliem a precisão global das previsões, a robustez dos modelos face a variações

extremas e a capacidade de capturar tendências em séries temporais não lineares. Por

esse motivo, foram selecionadas métricas amplamente reconhecidas e utilizadas na lite-

ratura, como o Erro Absoluto Médio (MAE), o Erro Percentual Absoluto Médio (MAPE),

o Erro Quadrático Médio da Raiz (RMSE) e a HuberMQLoss, cada uma com caracterís-

ticas específicas que contribuem para uma análise mais detalhada do desempenho dos

modelos.

Nesta subsecção descrevem-se as métricas utilizadas, destacando as suas caracte-

rísticas, vantagens e limitações. Adicionalmente, será explorado o impacto das escolhas

das métricas nos resultados obtidos, com uma análise detalhada sobre a adequação

de cada métrica às particularidades do mercado de criptomoedas e às arquiteturas dos

modelos implementados neste trabalho.

O MAE (Mean Absolute Error) mede a média das diferenças absolutas entre os valo-

res reais e os valores previstos. É uma métrica intuitiva, de fácil interpretação e que não

penaliza fortemente os outliers. No entanto, uma das suas limitações é o facto de não

distinguir entre erros pequenos e grandes, tratando-os todos com o mesmo peso, o que

pode não ser ideal em contextos financeiros onde grandes desvios são mais críticos. A

expressão do MAE é dado por 2.1.

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.1)

O MAPE (Mean Absolute Percentage Error) expressa o erro médio em termos per-

centuais, permitindo comparar o desempenho do modelo em diferentes escalas e faci-

litando a interpretação em cenários práticos, como variações de preços. Ainda assim,

esta métrica apresenta uma limitação importante: pode ser distorcida por valores reais

muito próximos de zero, o que afeta a sua fiabilidade em séries com grande amplitude

de variação.

MAPE =
100

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (2.2)

O RMSE (Root Mean Squared Error) representa a raiz quadrada da média dos erros

ao quadrado e é particularmente útil quando se pretende penalizar erros maiores, sendo

por isso bastante empregue em contextos financeiros. Reflete de forma mais agressiva

o impacto de grandes desvios, o que pode ajudar a detetar falhas graves nos modelos.

Contudo, a sua elevada sensibilidade a outliers pode também distorcer a avaliação global

do desempenho em séries voláteis como as criptomoedas.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.3)

2.5 Loss

Tanto para o treino como teste dos modelos de previsão baseados em redes neuronais,

nomeadamente o Temporal Fusion Transformer (TFT) e variantes do AutoML providas

pela biblioteca NeuralForecast, optou-se pela utilização da função de perda HuberMQ-

Loss. Esta decisão foi fundamentada na necessidade de conjugar robustez estatística

com a capacidade de modelar distribuições de probabilidade assimétricas, frequente-

mente observadas em séries temporais financeiras como o preço do Bitcoin.
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A HuberMQLoss resulta da combinação da função de perda de Huber, conhecida

pela sua resistência a outliers, com a quantile loss, permitindo que o modelo aprenda

não apenas valores médios, mas também estimativas intervalares (quantis) da variá-

vel de interesse. Esta abordagem é particularmente relevante no contexto de previsão

financeira, onde desvios abruptos e comportamentos extremos são comuns, podendo

distorcer significativamente modelos baseados em erros quadráticos médios (MSE) ou

absolutos (MAE).

Adicionalmente, ao permitir a modelação direta de quantis, a HuberMQLoss oferece

maior flexibilidade na avaliação de risco e na análise de incerteza das previsões, o que

representa uma mais-valia face a funções de perda tradicionais. Por conseguinte, a sua

aplicação neste trabalho visamelhorar a qualidade preditiva e a robustez dosmodelos em

cenários de elevada variabilidade e ruído nos dados. Por fim a escolha da HuberMQLoss

revela-se adequada face às características dos dados e aos objetivos do presente estudo.

A sua capacidade de mitigar a influência de valores extremos, aliada à flexibilidade na

modelação de quantis, proporciona uma abordagem preditiva mais robusta, precisa e

alinhada com as exigências do domínio financeiro. Esta função de perda contribui, assim,

de forma significativa para a estabilidade e desempenho geral dos modelos utilizados

neste trabalho.

HuberMQLoss =

n∑
i=1

{
τ · Lδ(yi − ŷi) se yi ≥ ŷi

(1− τ) · Lδ(yi − ŷi) se yi < ŷi
(2.4)

Em suma, a utilização combinada destas métricas permite obter uma avaliação mais

completa e equilibrada dosmodelos testados, respondendo de forma eficaz às exigências

de precisão, estabilidade e interpretação no contexto da previsão de ativos digitais.
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Bitcoin Forecasting

3 - Benchmarking

Este capítulo apresenta uma análise comparativa entre a solução desenvolvida no âm-

bito deste Trabalho Final de Curso e outras abordagens existentes, tanto científicas como

comerciais, com o intuito de contextualizar o projeto no estado da arte atual. O objetivo

é destacar os pontos fortes e fracos de cada alternativa, identificando as inovações in-

troduzidas, bem como a viabilidade, pertinência e impacto da solução proposta.

A nível comercial, destacam-se plataformas como a QuantConnect e a CryptoCom-

pare, que oferecem APIs e ferramentas avançadas para traders e investidores. Estas

plataformas disponibilizam funcionalidades como acesso a dados históricos, análise téc-

nica e execução automatizada de estratégias de trading. A principal vantagem reside

na facilidade de integração e acessibilidade dos seus recursos, permitindo uma rápida

implementação de estratégias num ambiente real de mercado. Contudo, estas soluções

tendem a operar com modelos genéricos, pouco ajustados às especificidades de dados

financeiros mais voláteis, como os das criptomoedas. Além disso, existe frequentemente

uma falta de transparência quanto aos algoritmos subjacentes, o que compromete a in-

terpretabilidade e personalização das previsões. Adicionalmente, estas plataformas ra-

ramente incorporam fatores exógenos relevantes, como o sentimento social, o que limita

o seu potencial preditivo em contextos mais complexos.

Relativamente às abordagens estatísticas tradicionais, os modelos ARIMA e SARIMA

continuam a ser amplamente utilizados para a análise de séries temporais. Estes mo-

delos baseiam-se em padrões de autocorrelação e sazonalidade, sendo particularmente

eficazes quando aplicados a séries estacionárias com estruturas regulares. São valoriza-

dos pela sua simplicidade, facilidade de implementação e baixo custo computacional, o

que os torna acessíveis mesmo em contextos com recursos limitados. No entanto, apre-

sentam várias limitações quando aplicados a domínios como o das criptomoedas. Em

particular, têm dificuldade em capturar padrões não lineares ou comportamentos estocás-

ticos complexos, característicos dos mercados financeiros digitais. Além disso, exigem

um pré-processamento rigoroso para tornar os dados estacionários, o que pode intro-

duzir enviesamentos na análise. Por fim, não estão concebidos para integrar fatores

externos, como volume de transações ou indicadores de sentimento do mercado, o que

compromete a sua capacidade de fornecer previsões contextualmente informadas.

No que toca à modelação de volatilidade, o modelo GARCH (Generalized Autoregres-

sive Conditional Heteroskedasticity) destaca-se pela sua especialização na previsão de

variabilidade em séries temporais financeiras. Este modelo é especialmente útil na ges-

tão de risco, permitindo estimar a volatilidade futura com elevada precisão, e apresenta

também uma boa eficiência computacional, sendo relativamente rápido mesmo em gran-

des volumes de dados. Contudo, o GARCH não é um modelo de previsão de valores

diretamente, mas sim de variância condicional, o que limita a sua aplicabilidade quando

o objetivo é prever o preço absoluto de ativos. Além disso, apresenta uma arquitetura

que não suporta bem dados multivariados, tornando-se inadequado em contextos onde

diferentes fatores interagem e influenciam simultaneamente o comportamento da série.

Em suma, enquanto as soluções comerciais oferecem conveniência e aplicabilidade

imediata, e os modelos estatísticos clássicos fornecem um ponto de partida sólido, a

complexidade dos dados financeiros modernos exige abordagens mais flexíveis e adap-

táveis — como aquelas baseadas em redes neuronais profundas — para alcançar um

desempenho preditivo robusto e relevante.

Dando continuidade à análise comparativa, é importante considerar os modelos ba-
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seados em Machine Learning, que têm vindo a ganhar destaque no domínio da previsão

de séries temporais financeiras pela sua capacidade de lidar com dados complexos, he-

terogéneos e não lineares. Entre os mais utilizados encontram-se os algoritmos Random

Forests, XGBoost e Support Vector Machines (SVM).

Os algoritmos de Random Forests e XGBoost são métodos supervisionados de en-

semble learning amplamente aplicados em finanças. São particularmente eficazes na

manipulação de dados tabulares e na incorporação de variáveis categóricas e numéricas

de forma simultânea. Estes modelos lidam bem com datasets heterogéneos, apresen-

tando uma menor sensibilidade a pequenas variações nos dados, o que os torna úteis

para séries menos voláteis ou com ruído limitado. Além disso, possuem mecanismos

internos que previnem overfitting, como regularização e subsampling. Contudo, uma das

principais limitações destes modelos reside na sua inadequação para capturar depen-

dências temporais de forma nativa. Isto significa que, para serem aplicados eficazmente

a séries temporais, requerem um extenso trabalho de engenharia de features, como a

criaçãomanual de variáveis lag, médias móveis, diferenças e outras transformações tem-

porais — tarefas que modelos de deep learning, como LSTM ou Transformers, realizam

de forma automática e integrada.

O Support Vector Machines (SVM), embora originalmente desenvolvido para clas-

sificação binária, também pode ser aplicado a problemas de regressão, sendo especi-

almente eficaz em situações onde a fronteira de decisão entre diferentes estados do

mercado é clara. O SVM apresenta uma boa precisão quando aplicado a séries com

comportamento linear ou ligeiramente não linear e é particularmente eficaz em conjuntos

de dados de pequena dimensão. Contudo, o seu desempenho degrada-se significati-

vamente em contextos com elevada volatilidade e não linearidade acentuada, como é o

caso do mercado de criptomoedas. Além disso, o SVM não é naturalmente adequado

para problemas de séries temporais contínuas, exigindo transformações prévias que po-

dem limitar a eficácia e interpretabilidade das previsões.

Em síntese, embora os modelos de Machine Learning tradicional ofereçam boas ca-

pacidades de previsão em determinados contextos, a sua eficácia em ambientes alta-

mente dinâmicos e não estacionários depende fortemente da qualidade da engenharia

de features e do conhecimento prévio sobre a estrutura dos dados. Como tal, no con-

texto específico da previsão de preços da Bitcoin, modelos baseados em deep learning

ou estruturas híbridas com capacidade de autoaprendizagem e integração de variáveis

exógenas tendem a revelar-se mais promissores e adaptados.

3.1 Análise dos Artigos e Comparação com o Trabalho Reali-

zado

Para contextualizar e validar a abordagem adotada neste Trabalho Final de Curso, foram

analisados artigos científicos recentes que exploram modelos de previsão no domínio

financeiro, com especial foco em séries temporais aplicadas a mercados voláteis como o

das criptomoedas. A comparação entre estas propostas e o trabalho desenvolvido per-

mite evidenciar as inovações introduzidas, assim como os seus pontos fortes e limitações

relativas.

O primeiro artigo analisado, “Forecasting the Bitcoin price using the various Machine

Learning” [2], apresenta uma comparação entre modelos clássicos de machine learning

como regressão linear, Random Forest e SVM. O artigo destaca a limitação destas abor-

dagens na captação de padrões não lineares e de alta volatilidade. Em contraste, o TFC

desenvolvido aposta em modelos sofisticados como o AutoTFT, LSTM e NHITS, capa-

zes de integrar variáveis exógenas como o sentimento social e o volume de transações,

oferecendo uma solução mais robusta e adaptada ao contexto cripto.
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O segundo artigo, “A Review of Bitcoin Price Prediction Based on Deep Learning Al-

gorithms” [3], analisa arquiteturas como LSTM, GRU e CNN, concluindo que estas supe-

ram os modelos clássicos na previsão de séries temporais financeiras. O estudo salienta

ainda que arquiteturas bidirecionais como Bi-LSTM oferecem vantagens na modelação

de padrões complexos. No entanto, limita-se a séries univariadas e não incorpora fatores

exógenos. O presente trabalho vai além dessa limitação, ao integrar múltiplas variáveis

contextuais e comparar diferentes modelos com validação robusta.

O terceiro artigo, “Deep learning for Bitcoin price direction prediction: models and tra-

ding strategies empirically compared” [4], investiga o uso de CNN-LSTM, TCN e ARIMA

para prever a direção domercado de Bitcoin, com avaliação simultânea demétricas predi-

tivas e retorno financeiro em estratégias de trading. Embora forneça uma análise prática

valiosa, o artigo não foca a integração com dados externos nem a otimização automati-

zada de hiperparâmetros, aspetos abordados no presente TFC.

Além destes, destacam-se também os estudos de “Predicting Bitcoin (BTC) Price in

the Context of Economic Theories” [5], que combinam modelos como SVR, MLP e re-

gressão OLS para integrar variáveis macroeconómicas, e o trabalho em [6], que compara

GRU e LSTM em tarefas de previsão cripto, revelando diferenças importantes em termos

de desempenho e estabilidade.

Por fim, o capítulo “A Comparative Study: LSTM, GRU, VGG16, VGG19 para previ-

são de Bitcoin” [7], explora a aplicação de arquiteturas híbridas entre redes neuronais

convolucionais e recorrentes, salientando o potencial de modelos visuais aplicados ao

domínio financeiro. Esta ideia, embora promissora, contrasta com a abordagem deste

TFC, que prioriza a modelação temporal e interpretabilidade.

Em suma, os artigos analisados oferecem contributos relevantes no que respeita à

eficiência computacional, análise de arquiteturas recorrentes e avaliação de desempenho

em trading. Contudo, apresentam limitações na integração de múltiplos fatores contextu-

ais e na adaptação a cenários multivariados. O TFC aqui apresentado distingue-se pela

sua abordagem abrangente, escalável e alinhada com os desafios reais enfrentados por

traders e analistas no atual mercado de criptomoedas.
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Bitcoin Forecasting

4 - Viabilidade e Pertinência

4.1 Viabilidade

A viabilidade e pertinência de aplicar RNNs ao trading e Bitcoin pode ser analisada a

partir de vários pontos.

4.1.1 Viabilidade Técnica

A abordagem técnica adotada neste projeto é altamente sofisticada, posicionando-se na

vanguarda da pesquisa em machine learning aplicado a finanças. A escolha de arquite-

turas como LSTM e Transformers é justificada pela sua capacidade de capturar padrões

temporais complexos e relacionamentos multivariados.

A aplicação de métricas avançadas, como a HuberMQLoss, destaca-se como uma

inovação técnica ao lidar com os extremos característicos do mercado de criptomoedas.

Esta métrica permite reduzir o impacto de outliers, produzindo previsões mais robustas e

confiáveis. Adicionalmente, o uso de outras métricas, como RMSE e MAE, proporciona

uma avaliação abrangente da precisão dos modelos.

Um aspeto técnico de destaque é a análise comparativa de modelos, que permite não

apenas identificar o melhor desempenho, mas também explorar limitações intrínsecas

de cada arquitetura. Esta abordagem aumenta a viabilidade das conclusões e justifica a

escolha final dos modelos mais adequados para a previsão dos preços da Bitcoin.

4.1.2 Viabilidade Económica

O mercado de criptomoedas tem-se tornado uma força disruptiva no sistema financeiro

global, com a Bitcoin como protagonista. Este ativo digital, com uma capitalização de

mercado frequentemente acima de 1 trilião de dólares, apresenta um comportamento

altamente volátil e complexo. A pertinência económica deste projeto está enraizada na

necessidade de ferramentas avançadas de previsão que permitam antecipar os movi-

mentos deste mercado.

Por um lado, investidores institucionais, como fundos de investimento e bancos, pro-

curam cada vez mais modelos preditivos para mitigar riscos associados à volatilidade.

Por outro, pequenos investidores, que muitas vezes carecem de conhecimento técnico

ou acesso a soluções robustas, também podem beneficiar das previsões como um meio

de maximizar retornos.

Além disso, o trabalho ganha relevância no atual cenário macroeconómico, marcado

por desafios como inflação global, instabilidade cambial e mudanças nas políticas mo-

netárias. A Bitcoin, vista por alguns como ”ouro digital”, é cada vez mais utilizada como

hedge contra esses fatores, reforçando a necessidade de análises preditivas mais preci-

sas.

4.1.3 Viabilidade Operacional

Operacionalmente, este projeto apresenta uma excelente viabilidade devido à acessibili-

dade dos dados e às tecnologias disponíveis. Os dados de preços históricos da Bitcoin,

volume de transações e indicadores adicionais, como sentimento social, estão ampla-

mente disponíveis através de APIs públicas e bases de dados comerciais.
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Os modelos escolhidos, como LSTM, Transformers e AutoRNN, oferecem flexibili-

dade para lidar com a natureza não linear e multivariada do problema. Ferramentas

de código aberto, como PyTorch, TensorFlow e a biblioteca NeuralForecast, reduzem

os custos operacionais e permitem replicabilidade. A utilização de hardware acessível,

como GPUs comerciais, torna o treino de modelos eficiente em termos de tempo e custo.

Por outro lado, a escalabilidade deste projeto é um ponto de destaque. Uma vez

desenvolvidos, os modelos podem ser ajustados para outros ativos ou até mesmo para

previsões emmercados financeiros tradicionais, ampliando o impacto prático da solução.

4.1.4 Viabilidade Social

O impacto social deste projeto é significativo, sobretudo em dois aspetos principais: aces-

sibilidade e inclusão financeira. As criptomoedas já transformaram o modo de como mui-

tos indivíduos, especialmente em economias emergentes, gerem e investem o seu capi-

tal. Este trabalho contribui para essa transformação ao oferecer ferramentas preditivas

que permitem decisões mais informadas e com uma maior margem de segurança.

Além disso, o trabalho reforça a literacia financeira, capacitando investidores de dife-

rentes perfis a compreender e atuar em mercados complexos. Esta inclusão é particu-

larmente relevante no contexto atual, onde há uma crescente procura de criptomoedas

em regiões desenvolvidas e subdesenvolvidas como alternativa a sistemas bancários

tradicionais.

No entanto, é importante considerar os riscos sociais associados, como a possibili-

dade de uso de previsões para manipulação de mercados. Este desafio reforça a neces-

sidade de desenvolver modelos éticos e transparentes.

4.1.5 Viabilidade Cultural

Embora o impacto cultural seja menos tangível, é impossível ignorar a influência das crip-

tomoedas na cultura moderna. A Bitcoin, em particular, tornou-se um símbolo de resis-

tência contra os sistemas financeiros tradicionais. Este projeto pode ser visto como parte

dessa narrativa cultural, posicionando-se como uma ponte entre tecnologia emergente e

adoção cultural. A longo prazo, a criação de ferramentas preditivas robustas pode con-

tribuir para a normalização das criptomoedas como instrumentos financeiros legítimos,

superando resistências culturais e desconfiança por parte de setores mais tradicionais.

4.2 Pertinência

A pertinência deste trabalho baseia-se no facto de ser uma ferramenta de auxílio para os

traders na toma de decisões isto é dar uma maior confirmação quando devem executar

um buy ou sell.
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5 - Solução Proposta

A solução proposta neste trabalho visa a previsão dos preços da Bitcoin, recorrendo a

métodos avançados de machine learning e deep learning, com uma abordagem multi-

variada que integra variáveis exógenas e dados históricos de forma estruturada. Este

projeto destaca-se pela utilização combinada de modelos de elevada sofisticação, como

as Redes LSTM (Long Short-Term Memory), o TFT (Temporal Fusion Transformer) e o

N-BEATS, cada um explorando diferentes capacidades para lidar com as especificidades

e complexidades inerentes às séries temporais financeiras.

A primeira etapa da proposta consiste na coleta e pré-processamento dos dados,

envolvendo a recolha de informações históricas de preços e volumes de transação a

partir de fontes credíveis, como a Binance ou a CoinMarketCap. Adicionalmente, são

incorporados indicadores macroeconómicos e variáveis relacionadas com o sentimento

social, extraídas de redes sociais e fontes de notícias financeiras. Após a coleta, os

dados são submetidos a um processo de limpeza, normalização e estruturação em séries

temporais, adequadas para a modelação preditiva.

Na fase de modelação, são implementadas as diferentes arquiteturas de deep le-

arning. As Redes LSTM são empregues pela sua comprovada eficácia na captura de

padrões temporais de longo prazo. O TFT, por sua vez, utiliza mecanismos de atenção

para integrar múltiplas variáveis exógenas e explorar relações complexas entre estas.

Já o N-BEATS é utilizado para decompor os dados em componentes hierárquicos, como

tendência e sazonalidade, permitindo uma análise detalhada dos padrões subjacentes.

A robustez e eficiência dos modelos são reforçadas através do ajuste automatizado de

hiperparâmetros, recorrendo a técnicas avançadas como a busca em grelha (grid search)

ou algoritmos genéticos, com o objetivo de otimizar o desempenho de cada modelo.

A precisão das previsões é assegurada através da aplicação da métrica HuberMQ-

Loss, que combina as propriedades das métricas tradicionais de erro quadrático médio

(MSE) e erro absolutomédio (MAE), promovendo uma penalização equilibrada de valores

extremos (outliers) e atenuando o seu impacto no treino dos modelos. Complementar-

mente, outras métricas, como o MAPE (Erro Percentual Absoluto Médio), o RMSE (Raiz

do Erro Quadrático Médio) e o MAE, são utilizadas para avaliar a eficácia e a consistência

dos modelos, garantindo uma análise abrangente do desempenho preditivo.

Os modelos são validados através de validação cruzada, uma técnica que evita o

overfitting e assegura que os resultados obtidos são generalizáveis para diferentes con-

dições de mercado. Para avaliar a sua robustez, os modelos são testados em cenários

que simulam a elevada volatilidade característica do mercado de criptomoedas. Os re-

sultados desta análise são apresentados através de gráficos e tabelas comparativas que

permitem avaliar a adequação de cada modelo aos diversos cenários.

Finalmente, realiza-se uma análise interpretativa dos resultados, com o objetivo de

identificar os modelos mais adequados para cada tipo de contexto e discutir as limitações

observadas durante a execução do projeto. Este processo culmina na elaboração de

propostas para melhorias futuras, bem como na entrega de modelos preditivos treinados,

prontos para aplicação em novos conjuntos de dados.

A presente proposta de solução apresenta-se como uma abordagem robusta, inova-

dora e escalável para enfrentar os desafios associados à previsão de preços da Bitcoin.

A sua singularidade reside na combinação de inovação técnica, integração de variáveis

exógenas e análise comparativa de desempenho entre modelos, respondendo de forma

eficaz às exigências dos mercados financeiros contemporâneos.
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6 - Metodologia e Planeamento

A abordagem metodológica adotada neste trabalho segue uma estratégia iterativa de

desenvolvimento e experimentação com base nos princípios do ciclo CRISP-DM (Cross

Industry Standard Process for Data Mining), adaptado ao contexto de previsão de séries

temporais com machine learning.

As fases principais incluem:

1. Compreensão do domínio: Estudo aprofundado sobre o funcionamento dos mer-

cados de criptomoedas, com foco na Bitcoin, bem como análise das necessidades

de previsão por parte de traders e investidores.

2. Recolha de dados: Obtenção de dados históricos de preços e volumes de transa-

ções de fontes como a Binance e a CoinMarketCap, bem como dados alternativos

(como sentimento social).

3. Preparação dos dados: Processamento dos dados em séries temporais multivari-

adas, com tratamento de valores nulos, normalização, criação de variáveis adicio-

nais (ex. médias móveis, RSI, volatilidade) e segmentação em conjuntos de treino,

validação e teste.

4. Modelação: Aplicação de diferentes modelos preditivos (LSTM, AutoTFT, NBE-

ATS, NHITS), utilizando a biblioteca NeuralForecast. Foram aplicadas estratégias

de ajuste automático de hiperparâmetros e validação cruzada temporal.

5. Avaliação e validação: Avaliação dos modelos com recurso a métricas como MAE,
RMSE, MAPE e HuberMQLoss, com análise comparativa dos resultados.

6. Documentação e iteração: Os resultados foram documentados e usados para

refinar a modelação, permitindo ajustar a abordagem consoante os insights obtidos.

O planeamento global do projeto encontra-se na Tabela 6.1, com as tarefas organi-

zadas por semana e fase.

Tabela 6.1: Planeamento de atividades

Semana(s) Atividade

S1-S2 Análise do problema, definição de objetivos

S3-S5 Levantamento de soluções e estudo do estado da arte

S6-S7 Recolha e análise exploratória dos dados

S8-S9 Pré-processamento dos dados e geração de features

S10-S12 Implementação e treino dos primeiros modelos (LSTM,

NBEATS)

S13-S14 Implementação e afinação do TFT e NHITS

S15-S16 Avaliação de modelos, métricas e testes

S17 Consolidação dos resultados e documentação técnica

6.1 Resultados Parciais e Progresso Técnico

Até ao momento, foi concluída a preparação dos dados e o treino inicial de três modelos

principais: LSTM, NBEATS e TFT. Os dados históricos foram organizados em séries tem-
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porais com frequência diária e enriquecidos com variáveis técnicas como médias móveis

e volume ajustado.

Osmodelos foram avaliados combase em subconjuntos de treino e teste com TimeSeriesSplit,
e os primeiros resultados indicam que oNBEATS obteve melhor desempenho em termos

de MAE e MAPE, enquanto o TFT foi mais robusto a outliers com a métrica HuberMQLoss.
Gráficos de previsão já foram gerados para os três modelos, permitindo visualização

clara da tendência, ciclos e desvios entre valores reais e previstos.

O código encontra-se em repositório Git e a estrutura modular do projeto já permite

facilmente a inclusão de novos modelos ou fontes de dados.

6.2 Ligação ao Repositório Git

O código-fonte do projeto encontra-se disponível no repositório Git institucional, onde

estão organizados todos os scripts e ficheiros relevantes para a preparação, treino, ava-

liação e visualização dos modelos preditivos.

• Link do repositório: https://github.com/Fpinto99/TFC

• Organização do repositório:

– /data: Scripts e datasets para pré-processamento

– /models: Treino e inferência dos modelos

– /results: Gráficos e ficheiros de métricas

– /notebooks: Experimentos interativos (Jupyter)

– /docs: Documentação auxiliar e estrutura do relatório

O repositório será mantido atualizado durante todas as fases do projeto, facilitando

a colaboração entre membros da equipa, a reprodutibilidade dos resultados e a entrega

final.

6.3 Planeamento Gantt

O planeamento foi inicialmente estruturado por semanas, com uma abordagem incre-

mental e iterativa. A Tabela 6.1 resume as fases principais do projeto. O cronograma

Gantt simplificado é apresentado abaixo, indicando o início e fim estimado de cada fase.
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Set Out Nov Dez Jan Fev Mar Abr Mai Jun

Análise do problema

Recolha e preparação de dados

Modelagem avançada e análise parcial

Documentação e 1ª entrega

Afinação inicial + integração de variáveis

Afinação com variáveis exógenas

Consolidação de resultados

Conclusões e propostas futuras

Revisão e consolidação do relatório

Versão final + preparação da defesa

Cronograma Gantt simplificado do desenvolvimento do projeto

Planeamento Execução Conclusão

Figura 6.1: Cronograma Gantt simplificado do desenvolvimento do projeto, com fases e

tarefas

6.3.1 Fluxo Metodológico do Projeto

A Figura 6.2 ilustra o pipeline metodológico seguido ao longo do desenvolvimento deste

trabalho. O processo teve início com a recolha de dados históricos da Bitcoin, obtidos de

fontes públicas fidedignas, que foram posteriormente sujeitos a um rigoroso processo de

pré-processamento.

Esta fase incluiu a limpeza dos dados, tratamento de valores nulos, normalização e

criação de variáveis auxiliares (ex.: médias móveis, RSI, volatilidade). Após a prepa-

ração, os dados foram segmentados em subconjuntos de treino e teste, respeitando a

ordem temporal de modo a evitar data leakage.

Seguidamente, procedeu-se à definição dos modelos de previsão, entre os quais se

destacam o LSTM, o AutoTFT e o NHITS, sendo cada um treinado individualmente com

diferentes conjuntos de hiperparâmetros. O desempenho preditivo de cada arquitetura

foi avaliado com base em métricas como o MAE, RMSE, MAPE e HuberMQLoss.

Por fim, as previsões obtidas foram analisadas tanto estatisticamente como visual-

mente, permitindo tirar conclusões sobre a robustez, estabilidade e adequação dos mo-

delos ao contexto da Bitcoin.
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Recolha de Dados

(Kaggle - BTC)

Pré-processamento

(limpeza e normalização)

Divisão Temporal

(Treino / Teste)

Definição dos Modelos

(TFT, NHITS, etc)

Treino dos Modelos

(com tuning)

Avaliação

(MAE, RMSE, MAPE)

Geração de Previsões

Visualização e Análise

Figura 6.2: Pipeline do processo de previsão de preços da Bitcoin

6.3.2 Validação e Qualidade dos Dados

Os dados utilizados neste projeto foram obtidos através da plataforma pública Kaggle,

nomeadamente do conjunto “Bitcoin Historical Data”, amplamente utilizado em estudos

académicos na área da previsão financeira. Esta escolha baseou-se na sua elevada

disponibilidade, reputação e consistência temporal.

Antes de qualquer etapa de modelação, os dados foram submetidos a um processo

de verificação e preparação. Foram removidos registos nulos e duplicados, a coluna

temporal foi convertida para o formato datetime e os valores foram ordenados cronolo-

gicamente. Esta sequência de passos visou garantir a integridade estrutural da série

temporal.

Adicionalmente, os dados foram normalizados e enriquecidos com variáveis técnicas

derivadas, como médias móveis e indicadores de volume, o que permitiu explorar rela-

ções multivariadas durante o treino dos modelos. A presença de outliers foi igualmente

analisada de forma visual e estatística, tendo-se optado por uma abordagem robusta a

essas anomalias, nomeadamente através do uso da função de perda HuberMQLoss.

A divisão entre treino e teste foi feita de forma sequencial, respeitando a natureza

temporal dos dados. Assim, assegurou-se que os modelos foram treinados apenas com

informação passada, evitando qualquer contaminação da fase de teste (data leakage).

A confiabilidade dos dados foi assumida com base na reputação da fonte e na consis-
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tência interna dos registos após o processo de validação, tornando-os adequados para

os objetivos de previsão de curto e médio prazo definidos neste trabalho.
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7 - Calendário

7.1 Estrutura do Planeamento

Este plano de trabalho foca-se na organização das tarefas remanescentes do projeto,

estruturadas em etapas com base nos princípios de gestão de projetos e inclui um deta-

lhamento das tarefas a realizar na fase seguinte.

Estimativas de alto nível para as atividades até a conclusão. Indicadores de pro-

gresso, dificuldades enfrentadas e ajustes ao plano inicial.

7.2 Tarefas Detalhadas da Fase Seguinte

7.2.1 Modelagem e Testes Finais

Descrição

Realizar ajustes finais nos modelos de previsão, otimizando parâmetros, métricas e

dados de entrada.

Subtarefas

Refinar o modelo TFT com hiperparâmetros ajustados. Incorporar variáveis exóge-

nas, como sentimento social e dados de volume. Comparar os resultados entre modelos

(LSTM, NBEATS,RNN,NHITS,KAN) para validação final. Testar a robustez dos modelos

em cenários de alta volatilidade.

7.2.2 Documentação e Redação do Estado da Arte

Descrição

Expandir e finalizar a revisão bibliográfica, enfatizando a inovação técnica e compa-

rações com a literatura existente.

Subtarefas

Revisar e integrar referências adicionais relevantes. Estruturar a análise comparativa

detalhada. Escrever as secções de benchmarking e justificar as escolhas do trabalho.

7.2.3 Desenvolvimento da Análise de Resultados

Descrição

Realizar análise quantitativa e qualitativa dos resultados obtidos, comparando métri-

cas e validando hipóteses.

Subtarefas

Calcular métricas como RMSE, MAE, MAPE e HuberMQLoss para cada modelo. Pro-

duzir gráficos comparativos e tabelas de desempenho. Interpretar os resultados em ter-

mos práticos e acadêmicos.

7.2.4 Elaboração de Conclusões e Propostas Futuras

O presente Trabalho Final de Curso permitiu evidenciar, com base em fundamentos teó-

ricos e experimentais, o potencial das abordagens de machine learning e deep learning

na previsão dos preços da Bitcoin — um ativo altamente volátil, influenciado por fatores

endógenos e exógenos, e cuja modelação constitui um dos maiores desafios no domínio

das séries temporais financeiras.
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Através da implementação e avaliação de diversosmodelos—nomeadamente LSTM,

TFT, NHITS, KAN, NBEATS e RNN — foi possível analisar o seu desempenho preditivo

sob duas perspetivas distintas: com hiperparâmetros por defeito e com configurações

ajustadas manualmente. Os resultados demonstraram que a afinação dos hiperparâme-

tros desempenha um papel determinante na eficácia dos modelos, com destaque para

o NHITS, que após calibração apresentou os melhores resultados globais em métricas

como MAE, RMSE, MAPE e HuberMQLoss.

Verificou-se, também, que a escolha da função de perda HuberMQLoss contribuiu

significativamente para a robustez dos modelos face à presença de outliers, sendo espe-

cialmente relevante num contexto financeiro caracterizado por eventos extremos e varia-

ções imprevisíveis. Por outro lado, modelos como o TFT, que inicialmente apresentaram

um desempenho promissor, mostraram-se sensíveis a ajustes manuais, revelando a ne-

cessidade de estratégias de otimização mais robustas e automatizadas.

Neste sentido, com base nas limitações e aprendizagens identificadas, propõem-se

as seguintes linhas de desenvolvimento futuro:

• Automatização da otimização de hiperparâmetros, recorrendo a frameworks

como o Optuna, de modo a minimizar a intervenção manual e explorar sistema-

ticamente combinações ótimas de parâmetros;

• Integração de variáveis exógenas mais diversificadas, tais como indicadores

macroeconómicos, métricas de sentimento social ou dados de volume provenientes

de fontes alternativas, enriquecendo assim o contexto informacional dos modelos;

• Aplicação de técnicas de ensemble, como o stacking ou o blending, que com-

binem os pontos fortes de diferentes arquiteturas e contribuam para uma previsão

mais estável e precisa;

• Implementação de pipelines de previsão contínua, com recurso a validação por

janela deslizante (rolling window), possibilitando simulações em tempo real mais

representativas da dinâmica dos mercados;

• Desenvolvimento de interfaces de visualização interativas, com recurso a fer-

ramentas como o Streamlit ou Dash, de forma a disponibilizar previsões, métricas

e gráficos de forma acessível a utilizadores finais;

• Extensão da abordagem a outros ativos financeiros, como outras criptomoedas

(ex. Ethereum, Solana) ou instrumentos tradicionais (ações, índices), permitindo

validar a generalização dos modelos propostos;

• Exploração futura de algoritmos de aprendizagem por reforço, com o intuito de

integrar as previsões num sistema de tomada de decisão sequencial para estraté-

gias automatizadas de trading.

Em suma, o trabalho aqui desenvolvido contribui não só com uma análise comparativa

entre múltiplas arquiteturas preditivas, mas também com uma base metodológica sólida

para a construção de sistemas de previsão robustos, escaláveis e orientados para a

tomada de decisão em ambientes financeiros altamente dinâmicos.
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8 - Resultados

Como objetivo de avaliar o desempenho dosmodelos preditivos utilizados neste trabalho,

foram realizadas duas experiências distintas. A primeira considerou os modelos com

os seus hiperparâmetros por defeito, enquanto a segunda aplicou valores modificados

manualmente, com o intuito de melhorar a capacidade preditiva.

Na configuração por defeito, os modelos TFT e KAN apresentaram os melhores re-

sultados em termos globais, com valores reduzidos de MAE, MAPE, RMSE e HuberMQ-

Loss, o que indica uma boa capacidade de adaptação às características da série temporal

analisada. O TFT, em particular, destacou-se como o modelo mais equilibrado, com o

menor MAE (1614.44) e uma das HuberMQLoss mais baixas (807.09), sinalizando um

forte desempenho no cenário inicial.

Modelos como o RNN e o NHITS, por sua vez, registaram os piores resultados nesta

fase, com erros significativamente mais elevados. Estes resultados sugerem que, sem

qualquer ajuste, estas arquiteturas não são tão eficazes para o tipo de dados utilizados,

podendo estar a sofrer de sobreajuste ou subajuste, conforme a natureza da arquitetura

e profundidade da rede.

Após a modificação dos hiperparâmetros, observou-se uma inversão no desempenho

relativo dos modelos. O NHITS, que inicialmente apresentava resultados desfavoráveis,

passou a ser o modelo com os melhores valores globais, destacando-se com um MAE

de 1590.67 e uma HuberMQLoss de apenas 795.21. Esta melhoria é indicativa de uma

afinação eficaz dos hiperparâmetros, evidenciando o potencial da arquitetura quando

corretamente calibrada.

Em contraste, o TFT, que inicialmente liderava, registou um decréscimo significativo

no desempenho após a modificação dos hiperparâmetros, com um aumento considerá-

vel em todas as métricas. Este fenómeno sugere que a arquitetura TFT é sensível a

alterações nos parâmetros de configuração, exigindo uma estratégia de otimização mais

robusta e talvez mais automatizada (por exemplo, via Optuna ou GridSearch).

Os modelos LSTM, KAN e RNN também apresentaram melhorias subtis, mas ne-

nhum deles conseguiu ultrapassar o NHITS otimizado. Esta constatação é relevante,

pois demonstra que modelos clássicos de séries temporais, como LSTM e RNN, embora

mais simples, ainda beneficiam de ajustes manuais e podem competir commodelos mais

recentes em determinados cenários.

A ausência de resultados modificados para o modelo NBEATS limita a análise da

sua performance otimizada, ficando a avaliação restrita à sua configuração por defeito.

Ainda assim, os seus valores iniciais indicam uma performance mediana, com espaço

para melhorias em experiências futuras.

Em síntese, os resultados obtidos demonstram que a escolha dos hiperparâmetros

desempenha um papel crucial no desempenho dosmodelos. O processo de afinação não

é uniforme e pode ter efeitos altamente positivos (como no NHITS) ou negativos (como

no TFT), dependendo da arquitetura e da natureza dos dados. Esta análise reforça a

importância da experimentação sistemática e da validação cruzada no desenvolvimento

de soluções robustas de previsão.
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Tabela 8.1: Resultados dos modelos com hiperparâmetros por defeito

Modelo MAE MAPE RMSE HuberMQLoss

TFT 1614.44 0.0380 1985.61 807.09

NHITS 3882.17 0.0925 4619.43 1940.96

KAN 1643.40 0.0388 2085.79 821.58

LSTM 2561.74 0.0605 2864.41 1280.75

RNN 4431.55 0.1052 4788.94 2215.65

NBEATS 4936.35 0.1174 5851.52 2468.05

Tabela 8.2: Resultados dos modelos após ajuste de hiperparâmetros

Modelo MAE MAPE RMSE HuberMQLoss

TFT 3867.11 0.0917 4116.66 1933.43

NHITS 1590.67 0.0378 2083.42 795.21

KAN 3735.15 0.0891 4418.10 1867.45

LSTM 3076.11 0.0729 3548.85 1537.93

RNN 3992.64 0.0952 4559.34 1996.19

NBEATS 1888.07 0.045 2376.54 943.91

Com o intuito de avaliar a eficácia preditiva dos modelos implementados neste traba-

lho, foi realizada uma comparação detalhada entre os valores reais de fecho da Bitcoin

durante o mês de dezembro de 2023 e os valores previstos por seis modelos distintos:

TFT, RNN, LSTM, KAN, NBEATS e NHITS, considerando tanto a configuração de hiper-

parâmetros por defeito como a configuração modificada manualmente.

A Tabela 8.3 apresenta, para cada um dos 31 dias do mês, o valor real da Bitcoin e

as respetivas previsões de cada modelo. Esta abordagem permite uma avaliação gra-

nular da consistência e precisão dos modelos ao longo do tempo, destacando eventuais

padrões de subajuste, sobreajuste ou instabilidade preditiva.

Observa-se que os modelos exibem comportamentos distintos ao longo do mês. O

modelo NHITS com hiperparâmetros modificados, por exemplo, apresenta previsões

frequentemente mais próximas do valor real, especialmente nos dias de maior oscilação.

Este desempenho é sustentado pelas métricas quantitativas obtidas na avaliação global,

onde o NHITS modificado alcançou um MAE de 1590.67, MAPE de 0.0378, RMSE de

2083.42 e HuberMQLoss de 795.21, destacando-se como o mais eficaz após afinação

dos parâmetros.

Em contraste, o modelo RNN com configuração por defeito registou os piores va-

lores, comMAE de 4431.55,MAPE de 0.1052, RMSE de 4788.94 e uma HuberMQLoss

de 2215.65, demonstrando uma tendência sistemática para subestimar os valores reais

da Bitcoin. Esta limitação é coerente com a natureza da arquitetura, mais sensível à

propagação de gradientes e menos robusta em séries temporais financeiras de elevada

volatilidade.

O modelo TFT, apesar de ter exibido o melhor desempenho na configuração por de-

feito (MAE de 1614.44, HuberMQLoss de 807.09), apresentou uma degradação acen-

tuada com os hiperparâmetros modificados (MAE de 3867.11, MAPE de 0.0917), o que

evidencia a sua sensibilidade à afinação manual e à possível necessidade de estratégias

mais sofisticadas de otimização (como o uso de Optuna ou Grid Search).

Além disso, a comparação permite observar que em certos dias — como a 7, 14 ou

28 de dezembro — a discrepância entre os valores reais e algumas previsões é parti-

cularmente acentuada. Estes desvios podem estar associados a eventos exógenos no
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mercado cripto, não contemplados pelos modelos univariados implementados, sugerindo

que a inclusão de variáveis externas poderá melhorar a capacidade preditiva.

Em suma, a análise da série de previsões ao longo de um mês completo mostra não

apenas a precisão média dos modelos, mas também a sua estabilidade temporal,

a capacidade de adaptação a variações abruptas e a coerência com o comportamento

real do ativo. Estas observações complementam a análise estatística feita anteriormente

e devem ser ponderadas na seleção do modelo final a ser utilizado num ambiente de

previsão em tempo real.

Tabela 8.3: Comparação entre valores reais da BTC e previsões dos modelos (dezembro

de 2023)

ds y TFT_Default TFT_Modificado RNN_Default RNN_Modificado LSTM_Default LSTM_Modificado KAN_Default KAN_Modificado NBEATS_Default NBEATS_Modificado NHITS_Default NHITS_Modificado

2023-12-01 37629.36 38932.06 36928.14 36948.82 34585.28 38909.37 36713.81 39147.97 39012.85 37704.79 37956.14 37937.14 37640.19

2023-12-02 38652.59 39039.06 37211.72 36366.13 34593.75 39052.54 36585.90 39177.69 39637.55 37874.70 38590.28 37887.03 37903.29

2023-12-03 39298.16 39124.36 37424.24 35955.84 34736.20 39093.80 36436.13 39451.87 39986.96 37625.79 38033.18 38438.09 37719.87

2023-12-04 39978.63 39196.89 37428.20 35556.01 34634.50 39078.91 36242.00 38502.21 40294.46 38210.66 38081.86 39065.44 37493.28

2023-12-05 41421.15 39265.16 37326.66 35418.06 34833.69 39033.91 36191.12 38794.44 40734.94 38619.27 38324.00 39420.94 37697.28

2023-12-06 43478.08 39342.84 37237.87 35408.49 35020.25 38954.09 36216.41 38813.87 40334.23 38559.46 38087.98 39956.11 38191.67

2023-12-07 42880.65 39434.70 37224.95 35501.04 35208.80 38849.21 36334.93 39849.80 41226.24 39544.11 38622.64 40343.01 38718.20

2023-12-08 43125.30 39537.44 37273.17 35522.04 35161.70 38722.09 36671.33 39247.62 41071.95 40297.50 38551.61 41221.16 39473.86

2023-12-09 43627.60 39647.85 37325.47 35742.36 35491.44 38630.69 37407.14 39652.83 42671.01 41358.79 39304.84 41869.89 39774.47

2023-12-10 43593.29 39765.61 37371.21 36183.96 36106.75 38600.91 38222.07 39475.62 42815.62 41827.96 38622.03 42334.72 40346.03

2023-12-11 40234.58 39890.62 37426.02 36894.40 37040.43 38707.54 38928.85 38815.59 42710.10 42315.61 39342.28 42811.98 40877.39

2023-12-12 40667.56 40020.00 37503.18 37665.33 37995.52 38914.61 39453.18 40238.65 43277.11 42888.84 40173.93 43241.76 41464.88

2023-12-13 40676.87 40147.94 37563.39 38217.86 38657.72 39103.06 39607.20 40083.53 43908.51 44318.06 40223.52 43887.76 41911.14

2023-12-14 41767.09 40268.43 37607.35 38383.92 38839.54 39240.09 39505.64 40061.23 44290.04 44626.51 40888.21 43965.19 42462.56

2023-12-15 41692.97 40378.12 37646.09 37821.13 37920.66 39283.84 39298.80 40332.20 44962.07 44945.18 41056.46 44124.83 42705.07

2023-12-16 41723.11 40477.55 37682.83 37248.12 37352.51 39291.29 39172.84 40387.91 45008.81 45227.13 41328.13 44303.89 43117.17

2023-12-17 41274.54 40570.68 37721.21 36903.00 37268.17 39278.45 39115.59 41054.88 45331.44 45678.72 42354.72 44818.26 42886.36

2023-12-18 40530.26 40660.92 37767.54 36865.38 37550.02 39267.13 39120.29 40697.18 45409.98 46414.35 42892.91 45255.51 42943.42

2023-12-19 41826.34 40742.94 37832.32 37095.04 38033.81 39273.03 39170.19 40891.94 46246.10 46706.30 43094.48 45581.45 43108.28

2023-12-20 42223.82 40805.60 37918.38 37427.25 38506.77 39300.36 39244.74 40951.15 46517.69 46803.63 43520.62 46359.13 43126.10

2023-12-21 43330.05 40847.10 38005.51 37876.90 39125.53 39365.41 39353.08 40165.91 47146.66 48215.92 44028.82 47043.77 43541.03

2023-12-22 43441.97 40872.82 38086.08 37858.10 38908.55 39398.12 39400.54 40528.04 46809.01 49215.98 44281.79 47459.43 42942.12

2023-12-23 43351.36 40886.99 38170.49 37586.94 38454.17 39401.76 39433.48 41460.35 47635.79 49511.22 44570.11 48048.09 42833.89

2023-12-24 42786.92 40892.14 38267.57 37775.97 38996.81 39447.00 39537.69 40859.70 48139.20 50047.66 44777.81 48189.22 42852.22

2023-12-25 42765.77 40890.23 38378.09 38222.62 39819.44 39530.96 39666.26 41166.81 48590.28 50932.01 43866.77 48618.16 42702.59

2023-12-26 41676.49 40882.84 38494.40 38738.69 40545.75 39651.08 39814.44 41038.67 49287.68 50925.28 44161.88 48886.75 42682.50

2023-12-27 42167.58 40871.29 38615.42 38970.62 40758.23 39766.64 39939.18 40362.97 49540.55 51414.77 44246.28 49352.61 42989.68

2023-12-28 42318.55 40856.63 38743.74 38882.95 40596.96 39855.26 40042.19 41915.65 48718.25 52614.77 43555.72 50242.42 42852.56

2023-12-29 41424.06 40839.70 38880.15 38753.58 40528.74 39931.86 40154.62 41240.85 49697.80 52034.14 43874.62 50172.94 43284.52

2023-12-30 41556.23 40821.17 39021.02 38890.78 40904.73 40021.92 40309.68 41219.01 49315.93 52361.71 43719.58 50552.64 43235.82

2023-12-31 41998.25 40801.58 39156.42 39059.92 41170.90 40110.06 40470.40 41316.14 50035.98 53050.97 44342.80 51039.09 43316.56

Figura 8.1: Evolução do modelo LSTM ao longo de dezembro 2023

Figura 8.2: Evolução do modelo TFT ao longo de dezembro 2023
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Figura 8.3: Evolução do modelo NBEATS ao longo de dezembro 2023

Figura 8.4: Evolução do modelo NHITS ao longo de dezembro 2023

Figura 8.5: Evolução do modelo RNN ao longo de dezembro 2023

Figura 8.6: Evolução do modelo KAN ao longo de dezembro 2023
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Prova de Conceito (PoC)

Para além da avaliação estatística e visual do desempenho dos modelos preditivos, foi

desenvolvida uma Prova de Conceito (PoC) com o objetivo de demonstrar a aplicabili-

dade prática das soluções propostas. Esta PoC foi baseada no modelo NHITS, uma vez

que este apresentou o melhor desempenho global após a afinação manual de hiperpa-

râmetros.

A PoC consiste num protótipo interativo construído com recurso à biblioteca Streamlit,

permitindo ao utilizador final aceder a previsões geradas pelo modelo, visualizar a evo-

lução dos dados históricos da Bitcoin e comparar, em tempo real, os valores reais com

os valores previstos. O painel desenvolvido permite ainda consultar as métricas de erro

associadas a cada previsão, fornecendo uma visão clara da fiabilidade do modelo.

As principais funcionalidades da PoC incluem:

• Visualização dos dados históricos de fecho da Bitcoin;

• Seleção de janelas temporais para previsão;

• Comparação gráfica entre previsões e valores reais;

• Apresentação das métricas MAE, RMSE, MAPE e HuberMQLoss por período;

• Interface acessível e adaptável a possíveis expansões futuras.

Este protótipo reforça a utilidade prática dos modelos desenvolvidos, servindo como

base para uma possível aplicação comercial ou institucional. A arquitetura modular da

aplicação permite a sua adaptação a outros ativos financeiros, integração com APIs de

dados em tempo real (como Yahoo Finance ou Binance) e inclusão de lógica de alerta

automatizada para apoio à tomada de decisão em ambientes de investimento.

A PoC demonstra, assim, que os modelos não apenas apresentam desempenho

robusto em ambiente experimental, como também possuem aplicabilidade real e valor

acrescentado para utilizadores que operam em contextos de elevada volatilidade e in-

certeza.

Figura 8.7: Comparação entre os valores reais e as previsões do modelo NHITS com

hiperparâmetros modificados (gráfico Streamlite)
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