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Resumo
Os incêndios florestais constituem um dos desastres naturais mais devastadores, cau-
sando impactos ambientais, sociais e económicos significativos. Estes eventos ameaçam
ecossistemas inteiros, comprometem a biodiversidade, colocam vidas humanas e ani-
mais em risco e contribuem para o agravamento das alterações climáticas devido à emis-
são de gases com efeito de estufa. Assim, a deteção precoce e eficiente de incêndios é
essencial para mitigar os seus danos e permitir intervenções rápidas e eficazes.

O desenvolvimento de incêndios florestais ocorre em duas fases principais: a emissão
de fumo, que é o primeiro indicador visível do início de uma combustão, e, posteriormente,
o aparecimento de chamas, que marcam um estado mais avançado e perigoso do fogo.
A deteção de fumo é particularmente desafiante devido à sua natureza translúcida e à
dispersão em condições ambientais adversas, como ventos ou luminosidade variável.
Por outro lado, o fogo é mais fácil de identificar, mas quando visível, normalmente já
representa uma situação crítica. Assim, um sistema de deteção eficaz deve ser capaz
de identificar tanto o fumo quanto o fogo para facilitar uma intervenção atempada.

Esta trabalho propõe o desenvolvimento de um sistema avançado baseado em deep
learning para a segmentação simultânea de fumo e fogo em imagens. Serão exploradas
duas arquiteturas reconhecidas pela sua eficiência em tarefas de segmentação, a U-
Net[1] e a ResUNet, ambas capazes de realizar classificações pixel-a-pixel em cenários
complexos. Os modelos serão treinados e avaliados utilizando dois conjuntos de da-
dos: o Corsican, um dataset público, e o Gestosa, um dataset privado, ambos contendo
imagens captadas por drones e sensores térmicos.

O estudo também investigará a melhoria dessas arquiteturas por meio da otimiza-
ção das funções de perda para aumentar a sua precisão e robustez, especialmente em
condições ambientais desafiadoras. A otimização das arquiteturas visa melhorar a de-
teção de padrões complexos, como os contornos irregulares de fumo e fogo, e garantir
uma maior eficácia em diferentes cenários.

Espera-se que os resultados desta trabalho demonstrem a viabilidade e a eficácia
de sistemas baseados em deep learning para a deteção precoce de incêndios florestais.
Esta abordagem representa um avanço significativo ao combinar a identificação de fumo
e fogo numa única solução, com potencial para transformar as estratégias de monitoriza-
ção, resposta a emergências e preservação ambiental.

Palavras-chave:Incêndios florestais; Deep learning, Segmentação de imagens; U-Net,
ResUNet-a,ResUNet, Visão computacional.
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Abstract
Wildfires are one of the most devastating natural disasters, causing significant environ-
mental, social and economic impacts. These events threaten entire ecosystems, compro-
mise biodiversity, put human and animal lives at risk and contribute to worsening climate
change due to greenhouse gas emissions. Therefore, early and efficient detection of fires
is essential to mitigate their damage and enable quick and effective interventions.

Wildfires develop in two main phases: the emission of smoke, which is the first visible
indicator of the start of combustion, and then the appearance of flames, whichmark amore
advanced and dangerous stage of the fire. Smoke detection is particularly challenging
due to its translucent nature and dispersion in adverse environmental conditions, such as
winds or variable lighting. On the other hand, fire is easier to identify, but when it is visible,
it usually already represents a critical situation. Therefore, an effective detection system
must be able to identify both smoke and fire to facilitate timely intervention.

This work proposes the development of an advanced system based on deep learning
for the simultaneous segmentation of smoke and fire in images. Two architectures recog-
nized for their efficiency in segmentation tasks will be explored, U-Net[1] and ResUNet,
both capable of performing pixel-by-pixel classifications in complex scenarios. The mod-
els will be trained and evaluated using two datasets: Corsican, a public dataset, and
Gestosa, a private dataset, both containing images captured by drones and thermal sen-
sors.

The study will also investigate improving these architectures by optimizing the loss
functions to increase their accuracy and robustness, especially in challenging environ-
mental conditions. The optimization of the architectures aims to improve the detection of
complex patterns, such as the irregular contours of smoke and fire, and ensure greater
effectiveness in different scenarios.

The results of this work are expected to demonstrate the feasibility and effectiveness
of deep learning-based systems for the early detection of Wildfires. This approach rep-
resents a significant advance by combining smoke and fire identification in a single solu-
tion, with the potential to transform monitoring, emergency response and environmental
preservation strategies.

Keywords:Wildfires; Deep learning, Image segmentation; U-Net, ResUNet-a,ResUNet,
Computer vision.
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1- Introdução
1.1 Motivação
Os incêndios florestais são uma ameaça cada vez maior em diversas regiões do mundo,
causando impactos ambientais, prejudicando comunidades e afetando a economia local.
Estes eventos devastadores têm sido amplificados pelas alterações climáticas, resul-
tando em incêndios mais frequentes e intensos. O impacto ambiental é particularmente
grave, com a destruição de vastas áreas de floresta, a perda de biodiversidade e a con-
tribuição significativa para as emissões de gases com efeito de estufa, exacerbando o
problema global das mudanças climáticas. Além disso, as comunidades afetadas por in-
cêndios florestais enfrentam grandes desafios económicos e sociais, desde a destruição
de bens e infraestruturas até à perda de vidas humanas.

A deteção precoce de incêndios florestais é um dos fatores mais críticos para mini-
mizar estes danos. Identificar um foco de incêndio logo nas suas fases iniciais pode ser
determinante para um combate eficaz e para a proteção de vidas e bens. Tradicional-
mente, a deteção de incêndios tem sido realizada por meio de vigilância humana ou
sistemas baseados em sensores. No entanto, estes métodos apresentam limitações em
termos de cobertura e precisão, especialmente em áreas remotas ou de difícil acesso,
onde a intervenção rápida é crucial.

Com o avanço das tecnologias de monitorização por satélite, drones e sensores,
surgem novas oportunidades para melhorar a deteção de incêndios em tempo real. Uma
dessas abordagens emergentes é o uso de técnicas de visão computacional combinadas
com algoritmos de deep learning. Estes algoritmos, ao processarem grandes volumes
de dados provenientes de imagens aéreas, podem identificar padrões visuais complexos,
como o fumo e o fogo, de forma muito mais eficiente do que os métodos tradicionais. A
segmentação de imagens, por exemplo, permite a separação precisa de áreas de inter-
esse, como os focos de incêndio, facilitando a tomada de decisões rápidas e informadas.

A grande importância deste trabalho reside na exploração de soluções tecnológicas
que possam aumentar a eficácia dos sistemas de deteção de incêndios florestais, con-
tribuindo para a sua antecipação e combate. A utilização de imagens aéreas e algorit-
mos avançados oferece uma oportunidade única para superar as limitações dos métodos
tradicionais, proporcionando uma abordagem mais eficaz e rápida para detetar focos de
incêndio logo nas suas fases iniciais. A relevância deste trabalho é ainda maior con-
siderando que a deteção precoce é fundamental para uma resposta eficaz e para a min-
imização dos danos ambientais e sociais causados por esses eventos.

1.2 Objetivo
O objetivo deste estudo é desenvolver e avaliar um sistema baseado em deep learning
para a deteção de incêndios florestais em tempo real, com ênfase na redução do tempo
de resposta e na melhoria da eficácia das operações de combate. A proposta visa usar
modelos de aprendizagem profunda para identificar e localizar focos de fogo e fumo, in-
formação crucial para uma resposta precoce e eficiente. Através da utilização de técnicas
avançadas de segmentação de imagens, este trabalho procura aprimorar a capacidade
de distinguir entre áreas queimadas, não afetadas e em risco, possibilitando uma análise
detalhada e precisa.

Com isso, espera-se não apenas otimizar os processos de monitorização em tempo
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real, mas também contribuir para a redução dos impactos ambientais, sociais e económi-
cos provocados pelos incêndios florestais. A aplicação de soluções tecnológicas inovado-
ras permitirá um maior grau de automação e assertividade nas decisões de gestão de
riscos, tornando o sistemamais eficaz naminimização dos danos causados por incêndios
em áreas florestais e nas comunidades circundantes.

1.3 Pergunta de pesquisa

É possível aumentar significativamente a precisão e a eficácia na deteção precoce de
incêndios florestais utilizando técnicas de deep learning aplicadas a imagens de incên-
dios?

1.4 Hipótese
A hipótese central deste estudo é que a aplicação de técnicas avançadas de deep learn-
ing, especificamente através de modelos de segmentação, pode melhorar substancial-
mente a deteção precoce e a precisão na identificação de incêndios florestais. A utiliza-
ção de redes neuronais profundas, quando aplicadas a imagens aéreas ou de satélite,
permite não só a segmentação eficaz dos focos de fogo, mas também a capacidade de
detetar o fumo de maneira antecipada, o que é crucial para uma resposta rápida.

Espera-se que, ao otimizar os modelos existentes e adaptá-los a diferentes conjuntos
de dados, seja possível alcançar uma solução robusta e precisa que identifique focos de
incêndio e fumo com uma taxa mínima de falsos positivos e falsos negativos. A ideia
é que, com a melhoria contínua das arquiteturas utilizadas, a deteção de incêndios se
torne mais eficaz, rápida e adaptável a diferentes cenários, reduzindo significativamente
o tempo de resposta e minimizando os danos causados pelos incêndios florestais.

Este estudo também investiga como a adaptação desses modelos pode levar a uma
maior eficiência na utilização de recursos em sistemas automáticos de monitorização,
além de contribuir para o desenvolvimento de tecnologias mais eficazes na mitigação dos
impactos ambientais e sociais dos incêndios. A hipótese é que, ao aplicar e refinar esses
modelos, será possível criar uma abordagem mais precisa e eficiente para a deteção e
monitorização em tempo real de incêndios florestais.

1.5 Etapas do relatório
O presente relatório está organizado em três capítulos principais, estruturados para ap-
resentar, de forma clara e sistemática, os objetivos, os fundamentos teóricos e a abor-
dagem prática adotada neste trabalho.

No Capítulo 1 - Introdução, são apresentados os aspetos motivadores deste estudo,
evidenciando a importância e a relevância do tema abordado. Este capítulo também es-
tabelece os objetivos gerais e específicos do trabalho, formula a pergunta de pesquisa e
apresenta a hipótese proposta. Esses elementos fundamentam o problema em questão,
oferecendo uma visão clara do propósito deste estudo e justificando sua realização no
contexto científico e prático.

O Capítulo 2 - Estado da Arte, oferece uma revisão teórica e prática sobre os princi-
pais tópicos relacionados à pesquisa. Inicialmente, são descritos os principais datasets
utilizados na área, com destaque para suas características, diversidade e representativi-
dade. Em seguida, são exploradas as técnicas de anotação, detalhando os processos
utilizados para criar um dataset de forma consistente e confiável. Posteriormente, são
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analisados os algoritmos existentes, discutindo suas características, abordagens e de-
sempenho. Por fim, é apresentada uma comparação entre os algoritmos, com base
em métricas de avaliação e aplicações específicas, identificando as limitações e oportu-
nidades para futuras melhorias.

O Capítulo 3 - Metodologia, descreve as abordagens utilizadas para implementar e
avaliar os modelos propostos. Em particular, são exploradas as arquiteturas baseadas
em U-Net e ResUNet-a, com explicações detalhadas das arquiteturas e como aumen-
tar a eficácia da segmentação. São também discutidas técnicas para otimizar o treino
dos modelos, como ajustes de funções de perda adequadas a problemas com classes
desequilibradas.

Capítulo 4 - Resultados apresenta a análise dos experimentos realizados para avaliar
o desempenho dos modelos de segmentação. São discutidos os impactos das diferentes
funções de perda, taxas de aprendizagem e estratégias de regularização na qualidade da
segmentação. Além disso, são exploradas as métricas utilizadas para a avaliação, per-
mitindo uma comparação objetiva entre as abordagens testadas. A análise dos resulta-
dos busca identificar asmelhores configurações para otimizar a segmentação, garantindo
um modelo eficaz e generalizável.

O Capítulo 5 - Calendário, detalha as etapas organizacionais do trabalho, com base
num cronograma estruturado que abrange desde a pesquisa científica até à redação
do relatório. Este capítulo expõe o planeamento das atividades e discute as estraté-
gias utilizadas para alcançar os objetivos de forma eficiente e no prazo estipulado. O
calendário apresentado encontra-se atualizado até à data deste relatório, refletindo as
etapas concluídas e os ajustes necessários para garantir a realização dos objetivos no
período estabelecido.

OCapítulo 6 - Conclusão, apresenta as reflexões finais sobre o trabalho desenvolvido,
destacando a relevância do tema e as contribuições do sistema proposto. Este capítulo
discute os principais passos realizados durante o projeto, bem como as potencialidades
da abordagem baseada em deep learning para a segmentação de fumo e fogo. Além
disso, são abordados os benefícios esperados desta solução para a área de monitor-
ização de incêndios florestais, concluindo com a importância do trabalho para avanços
científicos e aplicações práticas.
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2- Estado de arte
O impacto e desafios dos incêndios florestais
Os incêndios florestais são uma ameaça crítica para os ecossistemas naturais, causando
perdas significativas para a biodiversidade, degradação ambiental e impactando direta-
mente o bem-estar humano. As florestas, frequentemente chamadas de ”pulmões do
planeta”, desempenham um papel essencial na filtragem do ar, absorvendo dióxido de
carbono (CO2) e libertando oxigénio (O2), além de abrigar uma ampla diversidade de vida
selvagem e proteger as culturas agrícolas contra eventos climáticos extremos (Zanchi et
al., 2021 [2]; San-Miguel-Ayanz et al., 2013 [3]). A gravidade desses impactos pode ser
observada na perda global de cobertura arbórea entre os anos de 2001 e 2022, apre-
sentada na Figura 1. Os pontos vermelhos destacam as áreas afetadas por incêndios
florestais, algumas das quais estão sob esforços de restauração significativos.

Figure 1: Perda de cobertura global de árvores devido a incêndios, 2001-2022

2.1 Datasets
O presente trabalho recorre a dois conjuntos de dados, um púbico e outro privado, uti-
lizados na área de deteção de incêndios florestais: o Corsican[4] Dataset e o Firefront
Gestosa Dataset. Estes datasets fornecem imagens de incêndios capturadas em difer-
entes condições, contribuindo significativamente para o treino e validação dos modelos
de segmentação e deteção. Além disso, foi criado um dataset personalizado com im-
agens provenientes desses dois conjuntos de imagens, mas com a adição manual de
máscaras de anotação detalhadas, que incluem a segmentação de áreas de fogo, fumo
e fundo (ground truths). Estás máscaras serão feitas manualmente, assegurando um
elevado nível de precisão, o que permitirá ao modelo aprender de forma mais eficaz e
com maior adaptação às características específicas do cenário em análise.

2.1.1 Datasets Description
Corsican Dataset
O Corsican Dataset[4] contém aproximadamente 2000 imagens de incêndios florestais
capturadas sob diferentes configurações de câmaras, utilizando espectros visíveis e in-
fravermelhos próximos. As imagens apresentam resolução de 1024 × 768 pixels e estão
no formato PNG. Este conjunto de dados inclui imagens multimodais obtidas por câmaras
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como a ”JAI AD-080GE”, capazes de captar simultaneamente espectros visíveis e in-
fravermelhos através de óticas alinhadas. Cada imagem do dataset é acompanhada por
uma máscara de segmentação correspondente, criada utilizando técnicas de homografia
para registo preciso das imagens.

Firefront Gestosa Dataset
O FireFront Gestosa Dataset é um conjunto de dados criado para apoiar pesquisas na
deteção e segmentação de incêndios florestais. Ele contém imagens aéreas captadas
em cenários reais, abrangendo uma variedade de condições ambientais e intensidades
de fogo.

2.1.2 Datasets annotation technique
As máscaras de anotação, essenciais para o treino supervisionado dos modelos, foram
criadas manualmente utilizando a ferramenta MATLAB ImageLabeler [5]. O processo de
anotação envolveu a classificação de cada pixel das imagens como fogo, fumo ou fundo.
A Figura 2 apresenta uma imagem do dataset de incêndios florestais, e a Figura 3 mostra
a sua máscara feita manualmente.

Figure 2: Exemplo de uma imagem do dataset

Figure 3: Máscara criada manualmente para a imagem do dataset

2.2 Algoritmos Existentes
A deteção de incêndios florestais utilizando imagens aéreas tem sido amplamente estu-
dada com diferentes abordagens de algoritmos. Cada um desses algoritmos apresenta
vantagens e desvantagens dependendo do tipo de imagem utilizada, das condições am-
bientais e dos objetivos do estudo. A seguir, apresentamos uma análise comparativa de
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alguns estudos recentes que utilizam diferentes métodos para detetar incêndios florestais
em imagens, com foco nas metodologias, resultados e limitações de cada um.

MaskSU R-CNN
O artigo ”Forest Fire Segmentation from Aerial Imagery Data Using an Improved Instance
Segmentation Model”[6] apresenta o modelo MaskSU R-CNN, ilustrado na Figura 4, uma
evolução do Mask R-CNN, desenvolvida especificamente para melhorar a segmentação
de áreas de fogo em cenários florestais. A deteção e segmentação de regiões de fogo
em imagens são tarefas cruciais para a prevenção e controlo de incêndios, mas en-
frentam desafios significativos devido ao baixo contraste entre o fogo e o fundo, à na-
tureza dinâmica das chamas e às condições ambientais adversas. O MaskSU R-CNN
propõe uma solução que aborda estas limitações, integrando melhorias ao Mask R-CNN
para alcançar uma segmentação mais precisa e eficiente.

Inspirado pela arquitetura U-Net [1], o MaskSU R-CNN incorpora uma ramificação
MaskIoU em formato de ”U”, o que otimiza a segmentação de incêndios florestais ao
preservar características importantes durante o processamento. O modelo beneficia de
aprendizagem por transferência, utilizando pesos pré-treinados no dataset COCO. Este
método acelera o processo de treino, aproveitando as características extraídas de um
grande conjunto de dados diversificado para melhorar o desempenho do modelo em
bases de dados específicas e menores, como as usadas na deteção de fogo. Durante o
treino, pixeis da imagem são selecionadas e classificadas como positivas ou negativas
com base no limite de IoU (Intersection over Union), o que impacta diretamente a função
de perda e direciona o modelo para uma segmentação mais robusta.

O treino do MaskSU R-CNN 4 é orientado por uma função de perda multibranch,
composta por múltiplos componentes: perda RPN (Region Proposal Network), perda de
classificação, perda de regressão de caixas delimitadoras, perda de máscara e perda de
MaskIoU. Estes componentes trabalham de forma integrada para detetar e segmentar
áreas de fogo com alta precisão. A perda RPN é responsável pela geração de propostas
de regiões relevantes, enquanto a regressão de MaskIoU mede a qualidade da segmen-
tação ao comparar as máscaras previstas com as máscaras de referência (ground truth).
Estemecanismo é fundamental para otimizar a sobreposição entre asmáscaras previstas
e as reais, contribuindo para a melhoria contínua do modelo durante o treino.
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Figure 4: Arquitetura MaskSU R-CNN

A arquitetura equilibrada do MaskSU R-CNN permite ajustar os hiperparâmetros de
forma a manter um equilíbrio eficaz entre classificação, regressão de caixas delimitado-
ras e segmentação de máscaras. Esta abordagem garante uma convergência estável
durante o treino e resultados consistentes em diferentes cenários.

Os resultados apresentados no artigo demonstram a eficácia do MaskSU R-CNN, que
alcança uma precisão de 91,85%, recall de 88,81%, F1-score de 90,30%e ummean inter-
section over union (mIoU) de 82,31%. Estes valores destacam a capacidade do modelo
para realizar uma segmentação precisa e eficiente, mesmo em condições desafiadoras.
Assim, o MaskSU R-CNN posiciona-se como uma ferramenta promissora para a deteção
e monitorização de incêndios florestais, oferecendo suporte fundamental para a gestão
e mitigação de desastres ambientais.

GPG e MEI
O artigo ”Optimized Deep Learning Model for Fire Semantic Segmentation”[7] apresenta
uma abordagem para segmentação semântica de incêndios, ilustrada na figura 5 , abor-
dando desafios relacionados à identificação precisa de áreas afetadas pelo fogo. O tra-
balho propõe melhorias específicas em modelos de deep learning, com foco na correção
de erros nas bordas das áreas em chamas e na captação de informações contextuais
importantes para o cenário de incêndios.
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Figure 5: Arquitetura geral de segmentação semântica de incêndios

Os autores desenvolveram dois módulos principais para otimizar a segmentação. O
Guia de Posição Global (Global Position Guidance - GPG) concentra-se na correção
de falhas na identificação de características espaciais de baixo nível, oferecendo um
mapeamento mais preciso da posição dos incêndios. O Módulo de Interação Explícita
de Informações de Bordas (Multi-path Explicit Edge Information - MEI) tem como objetivo
melhorar a definição e precisão das bordas das áreas de fogo, utilizando uma arquitetura
multi-vias que integra informações de diferentes resoluções hierárquicas. Este design
permite uma análise detalhada e consistente, mesmo em condições desafiadoras, como
a presença de fumo ou reflexos.

Os modelos foram avaliados em bases de dados específicas de incêndios utilizando
métricas amplamente reconhecidas no campo. Para a métrica Intersection over Union
(IoU), o modelo alcançou um desempenho de 82,3%, superando métodos anteriores
como DeepLabv3+ e U-Net. Além disso, obteve uma precisão global de 92,1%, demon-
strando uma significativa melhoria na segmentação de áreas afetadas pelo fogo e na
identificação de bordas com maior detalhe.

U-net
Oartigo ”Aerial Imagery Pile Burn Detection UsingDeep Learning: The FLAMEDataset”[8]
apresenta uma metodologia para segmentação de imagens, ilustrada na figura 6, focada
na identificação de áreas com fogo em imagens aéreas. A segmentação é tratada como
um problema de classificação binária por pixel, visando gerar máscaras que identificam
regiões ativamente em chamas. Essa abordagem é particularmente útil em cenários
como a deteção de pequenos focos de fogo e o monitorização de áreas de queima.
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Figure 6: Arquitetura U-Net

Para alcançar esse objetivo, os autores utilizaram uma versão modificada da rede
U-Net, conhecida por sua aplicação em segmentação de imagens biomédicas. No mod-
elo adaptado, a função de ativação ReLU foi substituída pela Exponential Linear Unit
(ELU), visando suavizar os resultados e melhorar a precisão. A arquitetura do modelo
manteve a estrutura clássica da U-Net, composta por caminhos simétricos de contração
e expansão conectados por operações de concatenação, o que preserva informações
de alta resolução durante o processamento das imagens. Além disso, para minimizar
problemas de overfitting devido à quantidade limitada de dados, foi aplicada a técnica de

15



dropout durante o treino.
O conjunto de dados utilizado foi o FLAME dataset, que contém imagens aéreas an-

otadas manualmente para a criação de máscaras que representam as regiões de fogo.
A ferramenta MATLAB Image Labeler foi usada para gerar as anotações, e o dataset foi
composto por 2003 frames. As imagens RGB foram normalizadas, com cada pixel clas-
sificado como ”fogo” ou ”não-fogo” (fundo). O modelo foi treinado com a função de perda
binary cross entropy, otimizada pelo algoritmo Adam.

Os resultados obtidos demonstram a eficácia do modelo U-Net modificado. O de-
sempenho foi avaliado com base em várias métricas: uma precisão de 91,99%, recall
de 83,88%, área sob a curva (AUC) de 99,85%, F1-Score de 87,75%, sensibilidade de
83,12%, especificidade de 99,96% e Intersection over Union (IoU) de 78,17%. Esses
resultados indicam uma capacidade robusta do modelo em segmentar regiões de fogo,
oferecendo uma ferramenta valiosa para o monitorização e a gestão de incêndios em
ambientes aéreos.

2.3 Comparação de Algoritmos Existentes
A Tabela 1 apresenta uma comparação entre diferentes algoritmos de deteção e seg-
mentação de incêndios florestais, com base nos artigos analisados.

Artigo Algoritmo(s) Métricas (%)
Forest Fire Segmentation
from Aerial Imagery Data
Using an Improved Instance
Segmentation Model [6]

MaskSU R-CNN

• Precisão: 91,85%

• Recall: 88,81%

• F1-Score: 90,30%

• mIoU: 82,31%

Optimized Deep Learning
Model for Fire Semantic
Segmentation[7]

GPG e MEI

• IoU: 82,3%

• Precisão global: 92,1%

Aerial Imagery Pile Burn De-
tection Using Deep Learning:
The FLAME Dataset[8]

U-Net

• Precisão: 91,99%

• Recall: 83,88%

• AUC: 99,85%

• F1-Score: 87,75%

• Sensibilidade: 83,12%

• Especificidade: 99,96%

• IoU: 78,17%

Table 1: Comparação de algoritmos para segmentação de incêndios florestais
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2.4 Benchmarking
A aplicação de tecnologias avançadas de deep learning para a deteção de incêndios
florestais tem vindo a crescer em todo o mundo, incluindo na Europa, onde iniciativas
relevantes mostram como estas abordagens podem ser adaptadas a diferentes contextos
ambientais. Este subcapítulo explora implementações relevantes de sistemas baseados
em inteligência artificial em países europeus.

Sistema EFFIS (União Europeia)
O European Forest Fire Information System (EFFIS)[9] é uma iniciativa da Comissão
Europeia, criada para monitorizar e prever incêndios florestais em toda a Europa. O
sistema utiliza principalmente dados de satélites para fornecer informações em tempo
real sobre incêndios florestais e os riscos associados. Além disso, o EFFIS funciona
como uma plataforma colaborativa que permite a troca de dados entre países da União
Europeia, melhorando a capacidade de resposta coletiva no combate a incêndios.

Sistema CICLOPE (Portugal)
O CICLOPE[10] é um sistema de monitorização de incêndios florestais desenvolvido em
Portugal, com foco na deteção precoce de focos de incêndio em áreas de risco elevado,
como florestas e regiões de difícil acesso. Este sistema utiliza imagens de satélite e
tecnologias de inteligência artificial para detetar incêndios em estágio inicial, permitindo
a identificação rápida de focos emergentes e a emissão de alertas em tempo real. A
tecnologia do CICLOPE tem sido utilizada em várias regiões de Portugal para melhorar a
resposta a incêndios e reduzir os danos ambientais. A aplicação de inteligência artificial
permite uma análise precisa das imagens e dados, contribuindo para uma gestão mais
eficiente e rápida dos incêndios florestais.

Relevância destas Implementações para Portugal
As soluções implementadas em países da União Europeia, como o EFFIS e o CICLOPE,
demonstram como tecnologias avançadas de monitorização e análise preditiva podem
melhorar a gestão de incêndios florestais. A aplicação dessas tecnologias em Portugal
já tem contribuído significativamente para a deteção precoce e a resposta rápida a incên-
dios, fortalecendo as estratégias de prevenção e mitigação. Esses sistemas são funda-
mentais para otimizar a gestão de recursos, melhorar a coordenação entre as autoridades
e reduzir os danos ambientais e sociais causados pelos incêndios.pactos ambientais e
humanos causados pelos incêndios florestais.
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Segmentação de incêncios florestais

3 - Metodologias
3.1 Metodologia
A segmentação de focos de incêndio em imagens representa um desafio significativo
devido à complexidade dos padrões visuais envolvidos. Elementos como a interferência
do fumo, a translucidez das chamas e a variabilidade dos cenários ambientais dificultam
a identificação precisa dessas regiões. Métodos tradicionais de processamento de ima-
gens, baseados em modelagem matemática ou redes neuronais superficiais, frequente-
mente apresentam limitações na generalização e precisão, resultando em um elevado
número de falsos positivos e falsos negativos. Em contraste, as redes neuronais pro-
fundas, especialmente as Redes Neuronais Convolucionais (CNNs), destacam-se pela
sua capacidade de aprender representações robustas e características discriminativas
diretamente dos dados, superando essas limitações.

Neste estudo, foram exploradas as arquiteturas U-Net e ResUNet-a para a segmen-
tação de fogo e fumo. Essas redes são amplamente reconhecidas pela sua eficiência
em preservar informações críticas durante o processamento de imagens e por sua ca-
pacidade de capturar detalhes em múltiplas escalas. A U-Net, composta por caminhos
simétricos de contração e expansão conectados por operações de concatenação, possi-
bilita a extração e a fusão eficaz de características em diferentes resoluções. A ResUNet-
a, por sua vez, introduz blocos residuais, que aprimoram o fluxo de gradientes e mitigam
problemas como o vanishing gradient, tornando o treinamento mais estável e eficaz na
segmentação de padrões visuais complexos.

Além das vantagens estruturais da ResUNet-a, sua robustez será avaliada por meio
de experimentos com diferentes configurações de treinamento. Para isso, serão anal-
isadas quatro funções de perda—CrossEntropy, Dice Loss, Tversky Loss, Jaccard Loss,
Generalized Dice e Hausdorff loss— combinadas com três taxas de aprendizado distintas
(10−4, 10−3 e 10−2). Essa abordagem permitirá examinar como cada combinação de loss
function e learning rate influencia o desempenho da rede, garantindo uma segmentação
eficiente dos focos de incêndio.

Após a definição dos melhores hiperparâmetros de loss e learning rate, a arquitetura
ResUNet-A será aprimorada com a introdução de mecanismos de regularização para
reduzir o overfitting e melhorar a capacidade de generalização do modelo.

O pipeline de implementação segue as etapas fundamentais de treino e validação
dos modelos, utilizando dados anotados manualmente para a criação de máscaras que
representam as áreas de interesse. O desempenho das arquiteturas U-Net e ResUNet-a
será avaliado com base em métricas quantitativas como Global Accuracy, Balanced Ac-
curacy, F1-score e Intersection over Union (IoU), permitindo uma comparação detalhada
da eficácia dos modelos. A análise dos resultados possibilitará a identificação da config-
uração mais eficiente para a segmentação automática de incêndios, contribuindo para o
avanço das técnicas de monitorização e deteção precoce de focos de fogo.

U-Net
O U-Net [1] é uma arquitetura de rede neuronal convolucional concebida para segmen-
tação de imagens. O seu design em forma de ”U” combina um caminho de contração
(encoder), que extrai características de alto nível reduzindo progressivamente a res-
olução da imagem, e um caminho de expansão (decoder), que recupera a resolução
original, preservando detalhes espaciais essenciais para a segmentação precisa.
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Na implementação desenvolvida 7, a arquitetura segue essa estrutura fundamental,
mas com ajustes específicos para a segmentação de fumo e fogo. O modelo é composto
pelos seguintes componentes principais:

• Blocos de Convolução Dupla (DoubleConv): Cada camada do encoder e do
decoder contém duas convoluções seguidas de ativações ReLU, melhorando a ca-
pacidade de extração de características.

• Encoder: Composto por quatro níveis de convolução dupla, intercalados com op-
erações de max pooling, reduzindo a dimensionalidade da imagem enquanto au-
menta a profundidade da representação.

• Bottleneck: Representa o ponto de menor resolução da rede, onde a informação
extraída atinge a máxima abstração antes da reconstrução.

• Decoder: Inclui camadas de convolução transposta para upsampling da imagem,
seguidas de convoluções duplas que refinam as características recuperadas.

• Skip Connections: Ligam as camadas correspondentes do encoder e do decoder,
garantindo a preservação de detalhes importantes para a segmentação.

• Camada Final: Uma convolução 1×1 para gerar o mapa segmentado, com tantas
saídas quanto classes a serem segmentadas.

Essas características tornam o modelo altamente eficaz para a segmentação pixel
a pixel, preservando os contornos das regiões segmentadas – um fator essencial na
identificação de chamas e fumaça. Além disso, a rede pode ser otimizada por funções
de perda como Cross-Entropy ou Dice Loss, enquanto o otimizador Adam é utilizado para
acelerar a convergência do processo de otimização do modelo.

Figure 7: Arquitetura Unet

ResUNet-A
A arquitetura ResUNet-A [11] é uma evolução da arquitetura ResUNet, desenvolvida
para tarefas complexas de segmentação, como a deteção de incêndios florestais em
imagens de alta resolução. Esta arquitetura combina os blocos residuais da ResNet
com a estrutura clássica do U-Net, introduzindo componentes adicionais para melhorar
a extração de características e a preservação da informação espacial.

A arquitetura do ResUNet-A 8 é composta pelos seguintes componentes principais:
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• Encoder: Tem como objetivo extrair características de baixo para alto nível da im-
agem de entrada. A imagem começa com 3 canais (RGB) e as dimensões espaci-
ais são progressivamente reduzidas à medida que a imagem passa pelas camadas
convolucionais. Isso permite capturar padrões em diferentes escalas. Cada ca-
mada do encoder é composta por blocos residuais, que garantem maior estabili-
dade no treinamento e facilitam a propagação dos gradientes em redes profundas.
Nesta implementação, os blocos residuais do encoder utilizam diferentes valores
de stride e dilatação, aumentando o campo receptivo da rede sem uma perda ex-
cessiva de resolução espacial.

• Blocos Residuais: Os blocos residuais são a base da arquitetura ResUNet-A.
Cada bloco é composto por duas camadas convolucionais seguidas de normal-
ização em lotes (Batch Normalization) e uma função de ativação ReLU. O principal
objetivo dos blocos residuais é permitir que a rede aprenda funções de identidade,
facilitando a propagação de gradientes e minimizando o problema de degradação
que ocorre em redes profundas.
No código, a implementação do bloco residual é feita através da classe ResidualBlock.
A estrutura do bloco inclui:

– Primeira Convolução: A primeira camada convolucional aplica um filtro de
tamanho 3×3, com stride e dilatação ajustáveis (dependendo da profundidade
do bloco). A operação é seguida de uma camada de normalização em lotes
(Batch Normalization) e uma ativação ReLU.

– Segunda Convolução: A segunda camada convolucional aplica outro filtro
de 3× 3, com stride 1. Também é seguida por Batch Normalization.

– Skip Connection: A principal característica dos blocos residuais é a presença
da skip connection, ou conexão de atalho. Essa conexão permite que a en-
trada original seja somada diretamente ao resultado da segunda convolução.
Se o número de canais ou o stride for diferente, uma convolução 1×1 é usada
para ajustar as dimensões.

– Ativação ReLU Final: Após a soma da entrada com a saída das convoluções,
aplica-se uma função de ativação ReLU para garantir que o modelo aprenda
representações não lineares. O uso da ativação ReLU ajuda a mitigar o prob-
lema do gradiente explosivo ou de desaparecimento durante o treinamento.

A função forward na classe ResidualBlock descreve como o dado flui através de
cada uma dessas operações e, ao final, realiza a soma da entrada com a saída
do bloco convolucional. Essa soma é essencial para a efetividade do bloco resid-
ual, permitindo que a rede aprenda representações mais robustas, preservando as
informações relevantes durante o processo de treinamento.

• Bottleneck: É a parte mais profunda da rede, onde a resolução da imagem é re-
duzida ao seu mínimo e a quantidade de informação extraída é maior. Durante
esta fase, o número de canais atinge o valor máximo (1024), permitindo capturar
as características mais complexas e abstratas da imagem. O bottleneck também é
composto por um bloco residual, garantindo a consistência das representações ao
longo da rede.

• Decoder: O principal objetivo do decoder é restaurar as dimensões espaciais da
imagem até a sua resolução original, recuperando as informações perdidas du-
rante o downsampling. O decoder utiliza camadas de convoluções transpostas
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(ConvTranspose2d) para realizar o upsampling. Após cada operação de upsam-
pling, é aplicada uma função F.interpolate para garantir que a dimensão espa-
cial coincida com a das saídas do encoder (necessário para realizar a soma). Em
seguida, realiza-se uma soma (e não concatenação como na U-Net clássica) com
os mapas de características correspondentes do encoder. Cada bloco de upsam-
pling é seguido de um bloco residual, que ajuda a refinar as características recon-
struídas.

• Camada Final: A camada final do modelo é uma convolução 1 × 1, que mapeia a
saída do último bloco residual para o número de classes da tarefa de segmentação.
No caso da segmentação de incêndios florestais, essa camada gera uma máscara
com três classes: 0 para o background, 1 para o fumo e 2 para o fogo. Cada pixel
da imagem é classificado de acordo com uma dessas três categorias, permitindo a
identificação das áreas afetadas por fogo, fumo ou as regiões de fundo.

O fluxograma 8 abaixo ilustra a sequência de operações na arquitetura ResUNet-
A. Este mostra o fluxo de dados desde a entrada da imagem até a produção da saída
segmentada, incluindo os processos de downsampling no encoder, o bottleneck e o up-
sampling no decoder, com as respetivas skip connections entre as camadas.

Figure 8: Arquitetura ResUNet-a

3.2 Métricas de avaliação
As métricas utilizadas para avaliar o desempenho dos modelos de segmentação incluem:
Global Accuracy, Balanced Accuracy, IoU (Jaccard Score) e F1 Score.

• Global Accuracy: AGlobal Accuracy [12] fornece uma visão geral sobre a percent-
agem de pixels corretamente classificados, independentemente da classe a que
pertencem. Ela é calculada como a razão entre o número de pixels corretamente
classificados e o total de pixels na imagem. Embora amplamente utilizada pela sua
simplicidade, a Global Accuracy pode ser influenciada por um desbalanceamento
nas classes, o que pode tornar a métrica menos confiável em cenários com grande
desequilíbrio entre as classes. A fórmula para o cálculo da Global Accuracy é dada
por:

Global Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(1)

onde TP são os verdadeiros positivos, TN são os verdadeiros negativos, FP são
os falsos positivos e FN são os falsos negativos. Global Accuracy oferece uma
visão geral do desempenho, mas não distingue as classes de forma individual.
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• Balanced Accuracy: A Balanced Accuracy [13] resolve o problema da Global Ac-
curacy em cenários com classes desbalanceadas. Ela é calculada como a média
da accuracy de cada classe, proporcionando uma medida mais justa do desem-
penho do modelo, especialmente quando a distribuição das classes na base de
dados é desigual. A Balanced Accuracy é definida como:

Balanced Accuracy =
1

C

C∑
i=1

TPi

TPi + FNi
(2)

onde C é o número total de classes, TPi é o número de verdadeiros positivos da
classe i e FNi é o número de falsos negativos da classe i.

• IoU (Intersection over Union) - Jaccard Score: A métrica IoU [14], também con-
hecida como Jaccard Index, mede a sobreposição entre as áreas previstas e as
áreas reais. Ela é definida como a razão entre a interseção e a união das áreas
previstas e reais. A IoU é calculada como:

IoU =
TP

TP + FP + FN
(3)

onde TP representa os verdadeiros positivos, FP os falsos positivos eFN os falsos
negativos. Esta métrica penaliza mais fortemente os falsos positivos e negativos,
sendo útil para medir a precisão da segmentação.

• F1Score: O F1Score [15] é amédia harmônica entre a precisão e o recall, fornecendo
uma única métrica que combina tanto a precisão quanto a sensibilidade do modelo.
Ele é especialmente útil em cenários onde é importante equilibrar a precisão e a
capacidade do modelo de identificar todas as instâncias de uma classe. O F1 Score
é definido como:

F1 = 2 · Precision · Recall
Precision+ Recall

(4)

onde Precision = TP
TP+FP e Recall = TP

TP+FN . O F1 Score assume um valor entre 0
e 1, sendo 1 o melhor desempenho possível.

3.3 Loss Functions
No contexto de treino de redes neuronais profundas para tarefas de segmentação semân-
tica, a escolha da função de perda (loss function) é um fator determinante para o desem-
penho do modelo. A função de perda mede a discrepância entre as previsões da rede e
os valores reais (rótulos) do conjunto de dados, permitindo o ajuste iterativo dos pesos
da rede através da propagação do erro e da otimização por redução do gradiente.

A segmentação de imagens apresenta desafios específicos devido à elevada despro-
porção entre classes (por exemplo, poucas regiões de fogo comparadas com grandes
áreas sem fogo) e à necessidade de uma delimitação precisa das fronteiras dos objetos
segmentados. Para mitigar esses desafios, utilizam-se diferentes funções de perda, cada
uma com propriedades distintas que afetam a convergência e a precisão do modelo.

Neste estudo, foram avaliadas quatro funções de perda distintas: Cross-Entropy Loss,
Dice Loss, Teversky Loss e Jaccard Loss. Estas funções foram escolhidas devido à sua
capacidade de lidar com desbalanceamento de classes e à sua adequação para tarefas
de segmentação.

• Cross-Entropy Loss
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A Cross-Entropy Loss [16] é uma das funções de perda mais utilizadas para tarefas
de classificação e segmentação multiclasse. Neste caso, onde o objetivo é distin-
guir entre fundo, fogo e fumo, a cross-entropy mede a discrepância entre as proba-
bilidades preditas pela rede e os rótulos reais, atribuindo uma penalização maior a
previsões com baixa confiança. Apesar da sua eficácia geral, esta função de perda
não considera diretamente o desbalanceamento de classes, tratando todas com
igual peso. Assim, pode ser menos eficaz na deteção de regiões pequenas, como
o fogo e o fumo, que tendem a ser sub-representadas nos dados.
A Cross-Entropy Loss é definida como:

LCE = −
∑
i

yi log(ŷi) (5)

onde yi representa a classe verdadeira para o pixel i, e ŷi a probabilidade prevista
pelo modelo para essa classe.

• Dice Loss
A Dice Loss [17] baseia-se no coeficiente de Dice, uma métrica comum em seg-
mentação de imagens, sendo particularmente útil quando há um forte desbalancea-
mento entre classes. Por exemplo, em cenários que a deteção de incêndios, onde
as áreas de interesse (fogo e fumo) são significativamente menores que o fundo. A
Dice Loss maximiza a sobreposição entre a máscara predita e a verdade de solo,
favorecendo uma segmentação mais precisa das regiões minoritárias.
A Dice Loss é definida como:

LDice = 1− 2
∑

yiŷi∑
yi +

∑
ŷi

(6)

onde
∑

yiŷi representa a interseção entre as predições e os rótulos verdadeiros,
enquanto

∑
yi +

∑
ŷi representa a soma total das áreas segmentadas.

• Tversky Loss
A Tversky Loss [17] expande aDice Loss ao introduzir parâmetros que permitem um
controlo mais refinado sobre a penalização dos falsos positivos e falsos negativos.
Isto é particularmente relevante para a segmentação de incêndios, onde erros po-
dem ter impactos significativos na interpretação das imagens. A flexibilidade desta
função de perda permite otimizar o modelo para um melhor compromisso entre
sensibilidade e precisão, melhorando a segmentação das regiões críticas.
A Tversky Loss é definida como:

LTversky = 1−
∑

yiŷi∑
yiŷi + α

∑
yi(1− ŷi) + β

∑
(1− yi)ŷi

(7)

onde α controla a penalização sobre os falsos negativos e β sobre os falsos pos-
itivos. Valores mais elevados de α favorecem a sensibilidade da segmentação,
enquanto valores mais elevados de β favorecem a precisão.

• Jaccard Loss
A Jaccard Loss [17], também conhecida como Intersection over Union (IoU) Loss,
mede a proporção entre a interseção e a união entre a predição e a verdade de solo.
Esta função de perda é amplamente utilizada em tarefas de segmentação porque
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penaliza mais fortemente predições que apresentam sobreposição reduzida com as
regiões reais. No contexto da segmentação de incêndios, a Jaccard Loss é partic-
ularmente útil para garantir que o modelo não apenas deteta áreas de fogo e fumo,
mas que também define corretamente os seus contornos, reduzindo ambiguidades
na segmentação.
A Jaccard Loss é definida como:

LJaccard = 1−
∑

yiŷi∑
yi +

∑
ŷi −

∑
yiŷi

(8)

onde o denominador representa a união entre as áreas previstas e as áreas reais,
garantindo que a penalização por predições erradas seja proporcional ao erro cometido.

• Generalized Dice Loss
A Generalized Dice Loss [18] é uma extensão da Dice Loss que atribui pesos
às diferentes classes com base na sua frequência, tornando-a mais robusta para
cenários com desbalanceamento extremo. Em tarefas de segmentação de incên-
dios, onde o fogo e o fumo ocupam áreas significativamente menores do que o
fundo, esta função de perda reduz a influência do desbalanceamento na otimiza-
ção do modelo.
A Generalized Dice Loss é definida como:

LGDL = 1− 2

∑
wc

∑
yci ŷ

c
i∑

wc
∑

(yci + ŷci )
(9)

onde wc é um peso atribuído a cada classe, normalmente definido como wc =
1

(
∑

yci )
2 , equilibrando a contribuição de cada classe na perda total.
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4 - Resultados
A análise dos resultados obtidos na segmentação de fogo e fumo foi conduzida a partir
das métricas Global Accuracy, Balanced Accuracy, F1-score e Intersection over Union
(IoU). Os testes foram realizados para três valores distintos de learning rate (10−4, 10−3

e 10−2), com o objetivo de identificar amelhor configuração para a tarefa de segmentação.
Inicialmente, avaliou-se o desempenho da arquitetura U-Net utilizando apenas a função

de perda Cross Entropy, de forma a estabelecer uma linha de base para comparação com
a arquitetura da Reunet. Os resultados desta fase encontram-se na Tabela 2. Posterior-
mente, foi realizada uma análise mais aprofundada com a arquitetura Resunet, testando
múltiplas funções de perda (Cross Entropy, Dice Loss, Tversky Loss, Jaccard Loss e
Generalized Dice), conforme apresentado na Tabela 3. Esta abordagem permitiu sele-
cionar o modelo mais promissor e, em seguida, explorar o impacto das diferentes funções
de perda e learning rates no seu desempenho.

Learning Rate Métrica Cross Entropy

10−4

Accuracy 0.9871

Balanced Accuracy 0.9570

F1 Score 0.9571

IoU 0.9179

10−3

Accuracy 0.9485

Balanced Accuracy 0.9495

F1 Score 0.9486

IoU 0.9025

10−2

Accuracy 0.7100

Balanced Accuracy 0.7145

F1 Score 0.7101

IoU 0.5538

Table 2: Resultados da U-Net com função de perda Cross Entropy e diferentes valores
de learning rate
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Learning Rate Métricas Cross Entropy Dice Loss Tversky Loss Jaccard Loss GeneralizedDice

1.0× 10−4

Accuracy 0.9651 0.9477 0.9492 0.9638 0.9144
Balanced Accuracy 0.9676 0.9490 0.9512 0.9661 0.9197

F1 Score 0.9652 0.9478 0.9492 0.9638 0.9144
IoU 0.9327 0.9009 0.9035 0.9302 0.8426

1.0× 10−3

Accuracy 0.9649 0.9459 0.9455 0.9632 0.9093
Balanced Accuracy 0.9674 0.9466 0.9482 0.9652 0.9158

F1 Score 0.9650 0.9460 0.9456 0.9632 0.9094
IoU 0.9323 0.8975 0.8969 0.9290 0.8342

1.0× 10−2

Accuracy 0.9601 0.9290 0.7107 0.9515 0.8520
Balanced Accuracy 0.9616 0.9314 0.7546 0.9535 0.8581

F1 Score 0.9601 0.9289 0.7152 0.9515 0.8506
IoU 0.9234 0.8674 0.5577 0.9081 0.7415

Table 3: Tabela de Resultados da Resunet para Diferentes Losses e Learning Rates

4.1 Impacto da Função de Perda
A comparação entre as funções de perda revelou diferenças quantitativas relevantes no
desempenho do modelo, embora todas tenham alcançado valores globais considerados
elevados. A Cross Entropy destacou-se pela consistência dos seus resultados, obtendo
as melhores ou segundas melhores métricas em praticamente todos os cenários, com
destaque para a IoU de 0.9327 com learning rate de 10−4.

A Jaccard Loss também apresentou desempenho competitivo, com métricas muito
próximas das da Cross Entropy, especialmente em IoU e F1-score. A Tversky Loss apre-
sentou um comportamento mais instável: enquanto com 10−4 alcançou uma IoU elevada
de 0.9035 (superior à da Dice Loss e Generalized Dice), com 10−2 essa mesma métrica
desceu drasticamente para 0.5577, refletindo sensibilidade acentuada à variação da taxa
de aprendizagem.

As funções Dice Loss e Generalized Dice apresentaram, de forma geral, desempen-
hos ligeiramente inferiores. A Generalized Dice, em particular, foi consistentemente a
função com os valores mais baixos de IoU em todos os learning rates. Por exemplo,
para 10−4, obteve IoU de 0.8426, consideravelmente inferior ao valor obtido com Cross
Entropy no mesmo cenário.

Portanto, observa-se que, embora nenhuma função de perda tenha comprometido
de forma significativa a capacidade do modelo, o desempenho varia conforme a taxa de
aprendizagem utilizada. Isso indica que a escolha da função de perda deve ser feita em
conjunto com a calibragem adequada dos hiperparâmetros, em vez de forma isolada.

4.2 Influência da Taxa de Aprendizagem
A taxa de aprendizagem teve um papel importante na estabilidade e qualidade do treina-
mento. As menores taxas testadas (10−4 e 10−3) proporcionaram resultados mais es-
táveis e elevados em todas as métricas. As variações entre essas duas taxas foram
geralmente pequenas, o que sugere que omodelo apresenta robustez dentro dessa faixa.
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No entanto, ao utilizar a taxa de 10−2, houve degradação significativa do desempenho
em várias funções de perda, em especial na Tversky Loss, cuja métrica de IoU caiu
de 0.9035 (com 10−4) para 0.5577. Esse comportamento aponta para dificuldades de
convergência e instabilidade no processo de otimização com taxas muito elevadas.

Embora funções como a Cross Entropy e a Jaccard Loss tenham mantido desem-
penho relativamente alto mesmo com 10−2, os resultados globais indicam que essa taxa
não é ideal para a maioria das funções testadas.

Dessa forma, conclui-se que learning rates de 10−4 ou 10−3 são mais apropriadas
para esta tarefa, proporcionando um equilíbrio entre desempenho e estabilidade. A in-
teração entre taxa de aprendizagem e função de perda mostrou-se crítica, reforçando a
necessidade de ajuste conjunto desses parâmetros durante a fase de experimentação.

4.3 Análise Visual da Segmentação
Para complementar a avaliação quantitativa, foi realizada uma análise visual da segmen-
tação produzida pelo modelo. A Figura 9 apresenta um exemplo ilustrativo contendo:
(a) a imagem original; (b) a máscara de segmentação de referência (ground truth); (c) a
máscara prevista pelo modelo; e (d) a sobreposição dos erros de predição, destacando
os falsos positivos e falsos negativos.

Figure 9: Análise visual da segmentação: (a) imagem original; (b) máscara de referên-
cia; (c) predição do modelo; (d) mapa de erro com falsos positivos (a amarelo) e falsos
negativos (em azul).

Na imagem original (a), observa-se a presença de regiões com fogo e/ou fumo, as
quais foram rotuladas manualmente na máscara de referência (b). A predição do modelo
(c) mostra uma segmentação bastante próxima da verdade de terreno, evidenciando a
boa capacidade do modelo em identificar corretamente as regiões relevantes.

Na imagem (d), é apresentado um mapa de erro, onde os **falsos positivos** (pixels
identificados como fogo/fumo pelo modelo, mas ausentes na máscara real) são assinal-
ados a amarelo, e os **falsos negativos** (pixels presentes na máscara real, mas ignora-
dos pela predição) são assinalados a azul. Essa visualização permite identificar de forma
clara os padrões de erro do modelo.

Observa-se que a maioria dos erros está concentrada em regiões de contorno, o que
é típico em tarefas de segmentação semântica. A baixa ocorrência de falsos negativos
sugere que o modelo é conservador na deteção de regiões críticas, o que é vantajoso em
aplicações de segurança e monitoramento. Por outro lado, os falsos positivos, embora
presentes, são dispersos e não formam regiões coesas, o que indica boa precisão geral.

Esta análise qualitativa valida os resultados quantitativos obtidos nas métricas, re-
forçando a capacidade domodelo em realizar segmentações precisasmesmo em cenários
com complexidade visual elevada.
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Segmentação de incêncios florestais

5 - Calendário
O cronograma apresentado na figura 10 detalha as etapas principais do projeto, distribuí-
das entre osmeses de outubro de 2024 e junho de 2025. Este plano de trabalho organiza-
se em cinco atividades principais: pesquisa científica, construção do dataset, desen-
volvimento do algoritmo U-Net, desenvolvimento do algoritmo ResUNet-a e redação do
relatório. A seguir, é apresentada uma descrição detalhada de cada uma das fases.

Figure 10: Calendário de atividades do TFC

Pesquisa Científica
Esta etapa inicial foca na revisão de literatura e exploração de metodologias já exis-
tentes para a segmentação de incêndios florestais. Serão analisados artigos científicos,
algoritmos de aprendizagem profunda (como U-Net e ResUNet-a) e estudos que visam
identificar as métricas mais relevantes para avaliar a eficácia de modelos de segmen-
tação. O objetivo principal desta fase é construir uma base teórica sólida para guiar o
desenvolvimento técnico do projeto.

Construção do Dataset
Durante este período, será realizada a construção de um dataset personalizado para a
segmentação de incêndios florestais, utilizando imagens dos conjuntos de dados Corsi-
can Dataset e Firefront Gestosa Dataset. Serão criadas manualmente máscaras detal-
hadas para identificar os pixeis de fogo, fumo e fundo nas imagens, com o objetivo de
garantir a precisão e a qualidade dos dados para o treino dos modelos.

Desenvolvimento do Algoritmo U-Net
Uma vez construído o dataset, inicia-se o desenvolvimento do modelo U-Net. Nesta
fase, será implementado um modelo de segmentação que utiliza a arquitetura U-Net
para identificar e segmentar áreas afetadas por incêndios. O processo inclui o treino
do modelo, ajustes nos seus hiperparâmetros e a avaliação. O objetivo desta fase é criar
um modelo robusto que consiga segmentar áreas de fogo e fumo com alta fiabilidade.

Desenvolvimento do Algoritmo ResUNet-a
Durante este período, será desenvolvido o algoritmo ResUNet-a, uma versão avançada
do modelo de segmentação, projetada para lidar com tarefas complexas, como a seg-
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mentação de áreas afetadas por incêndios florestais. O ResUNet-a incorpora técnicas
avançadas, como convoluções dilatadas (atrous convolutions) e mecanismos de atenção
espacial (spatial attention mechanisms), que permitem ao modelo capturar padrões es-
paciais e contextuais mais ricos em imagens de alta resolução. O foco será melhorar
a precisão da segmentação em condições desafiadoras. Durante esta fase, o modelo
será treinado, ajustado e avaliado, com especial atenção aos hiperparâmetros, visando
otimizar seu desempenho e garantir sua capacidade de generalização para novos dados.

Redação do Relatório
A redação do relatório ocorrerá ao longo de todo o projeto, com maior intensidade nos
meses finais. Esta atividade inclui a documentação detalhada das etapas do projeto,
desde a metodologia e construção do dataset até os resultados obtidos nos testes com
os modelos. A entrega de um relatório bem estruturado e completo é essencial para
consolidar os resultados do projeto e garantir que as conclusões sejam devidamente
comunicadas.

Este cronograma foi elaborado para permitir uma progressão lógica das atividades,
assegurando que cada etapa seja concluída com a profundidade necessária para al-
cançar os objetivos estabelecidos no projeto.
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Segmentação de incêncios florestais

6 - Conclusão
6.1 Síntese dos Resultados
Este trabalho teve como objetivo desenvolver e avaliar modelos de segmentação semân-
tica para a identificação de fogo e fumo em imagens de incêncios florestais, com base
nas arquiteturas U-Net e ResUNet. A análise foi conduzida com um conjunto reduzido
de dados anotados manualmente — um total de 375 imagens — o que, embora limitado,
permitiu alcançar resultados promissores.

Inicialmente, utilizou-se a U-Net como baseline com a função de perda Cross Entropy,
observando-se um bom desempenho, especialmente com learning rate de 10−4 e 10−3

. Em seguida, a arquitetura ResUNet foi avaliada de forma mais abrangente, testando
cinco funções de perda e três taxas de aprendizagem. Os melhores resultados foram
obtidos com Cross Entropy e Jaccard Loss, particularmente quando combinadas com
learning rates mais baixos (10−4 e 10−3), demonstrando elevada IoU e consistência nas
restantes métricas.

6.2 Importância da Taxa de Aprendizagem
A taxa de aprendizagem mostrou-se um dos fatores mais críticos para o desempenho
dos modelos. Aprendizagens muito elevadas (10−2) resultaram frequentemente em in-
stabilidade e degradação de desempenho, especialmente para funções de perda mais
sensíveis como a Tversky Loss. Por outro lado, taxas menores (10−4 e 10−3) propor-
cionaram uma aprendizagem mais estável, com convergência mais eficaz e resultados
mais consistentes. Este achado reforça a importância de uma escolha criteriosa do learn-
ing rate durante a fase de ajuste de hiperparâmetros.

6.3 Impacto do Conjunto de Dados e Possíveis Melhorias
O conjunto de dados utilizado constitui uma limitação significativa. Apesar dos bons resul-
tados obtidos, a utilização de apenas 375 imagens segmentadas manualmente restringe
a capacidade de generalização do modelo para diferentes cenários e condições visuais.
Ampliar o conjunto de dados, seja por meio da anotação manual de novas imagens, seja
por técnicas de data augmentation (como rotações, reflexões, alterações de brilho e con-
traste), poderá melhorar significativamente a robustez e o desempenho do modelo.

6.3 Impacto do Conjunto de Dados e Possíveis Melhorias
O conjunto de dados utilizado constitui uma limitação significativa. Apesar dos bons resul-
tados obtidos, a utilização de apenas 375 imagens segmentadas manualmente restringe
a capacidade de generalização do modelo para diferentes cenários e condições visuais.
Além disso, por se tratar de anotações manuais, é possível que existam erros ou impre-
cisões nas máscaras de referência, o que pode introduzir ruído no processo de treino e
avaliação.

Ampliar o conjunto de dados, seja por meio da anotação de novas imagens commaior
rigor, seja pela adoção de técnicas de data augmentation (como rotações, reflexões, al-
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terações de brilho e contraste), poderá melhorar significativamente a robustez e o de-
sempenho do modelo.

6.4 Considerações Finais
Os resultados obtidos demonstram que a ResUNet, combinada com funções de perda ad-
equadas e uma taxa de aprendizagem bem ajustada, é capaz de realizar segmentações
precisas de fogo e fumo, mesmo em contextos visuais complexos. A análise quantita-
tiva foi reforçada por uma avaliação visual das segmentações, a qual revelou uma boa
correspondência entre as previsões do modelo e as máscaras de referência, com erros
principalmente localizados nas regiões de contorno.

Embora promissora, a aplicação prática deste modelo requer novos testes com da-
dos mais variados e em tempo real, além da integração em sistemas de monitoramento
e deteção automática. Este trabalho oferece uma base sólida sobre a qual futuras inves-
tigações poderão construir sistemas mais completos, robustos e aplicáveis a cenários
reais de risco.

31



Segmentação de incêncios florestais

Bibliografia
[1] Papers with Code - U-Net Explained. URL: https://paperswithcode.com/method/

u-net.
[2] Giuliana Zanchi et al. “Simulation of water and chemical transport of chloride from

the forest ecosystem to the stream”. In:Environmental Modelling & Software (2021).
URL: https://www.sciencedirect.com/science/article/pii/S136481522100027X.

[3] Jesús San-Miguel-Ayanz, Jose Manuel Moreno, and Andrea Camia. “Analysis of
large fires in European Mediterranean landscapes: Lessons learned and perspec-
tives”. In: Forest Ecology andManagement (2013). URL: https://www.sciencedirect.
com/science/article/pii/S0378112712006561.

[4] TomToulouse et al.Computer vision for wildfire research: An evolving image dataset
for processing and analysis. July 07, 2017. URL: https://www.sciencedirect.
com/science/article/abs/pii/S0379711217302114?via%3Dihub (visited on
11/2024).

[5] Image Labeler. URL: https : / / www . mathworks . com / help / vision / ug / get -
started-with-the-image-labeler.html.

[6] Guan et al. “Forest Fire Segmentation from Aerial Imagery Data Using an Improved
Instance Segmentation Model”. In: Remote Sensing 14.13 (2022). ISSN: 2072-
4292. DOI: 10.3390/rs14133159. URL: https://www.mdpi.com/2072- 4292/
14/13/3159.

[7] Songbin Li et al. Optimized Deep Learning Model for Fire Semantic Segmentation.
April 21, 2022. URL: https://www.techscience.com/cmc/v72n3/47492/html.

[8] Songbin Li et al. Aerial imagery pile burn detection using deep learning: The FLAME
dataset. March 23, 2021. URL: https : / / www . sciencedirect . com / science /
article/pii/S1389128621001201.

[9] EFFIS. URL: https://forest-fire.emergency.copernicus.eu/.
[10] Ciclope. URL: https://inov.pt/project/ciclope/index.html.
[11] Foivos I. Diakogiannis et al. “ResUNet-a: A deep learning framework for seman-

tic segmentation of remotely sensed data”. In: ISPRS Journal of Photogrammetry
and Remote Sensing (2020). DOI: https://doi.org/10.1016/j.isprsjprs.
2020.01.013. URL: https://www.sciencedirect.com/science/article/pii/
S0924271620300149.

[12] GlobalAccuracy. URL: https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.accuracy_score.html.

[13] BalancedAccuracy. URL: https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.balanced_accuracy_score.html.

[14] IOU. URL: https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.jaccard_score.html.

[15] F1score. URL: https : / / scikit - learn . org / stable / modules / generated /
sklearn.metrics.f1_score.html.

[16] CrossEntropyLoss. URL: https : / / pytorch . org / docs / stable / generated /
torch.nn.CrossEntropyLoss.html.

32

https://paperswithcode.com/method/u-net
https://paperswithcode.com/method/u-net
https://www.sciencedirect.com/science/article/pii/S136481522100027X
https://www.sciencedirect.com/science/article/pii/S0378112712006561
https://www.sciencedirect.com/science/article/pii/S0378112712006561
https://www.sciencedirect.com/science/article/abs/pii/S0379711217302114?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0379711217302114?via%3Dihub
https://www.mathworks.com/help/vision/ug/get-started-with-the-image-labeler.html
https://www.mathworks.com/help/vision/ug/get-started-with-the-image-labeler.html
https://doi.org/10.3390/rs14133159
https://www.mdpi.com/2072-4292/14/13/3159
https://www.mdpi.com/2072-4292/14/13/3159
https://www.techscience.com/cmc/v72n3/47492/html
https://www.sciencedirect.com/science/article/pii/S1389128621001201
https://www.sciencedirect.com/science/article/pii/S1389128621001201
https://forest-fire.emergency.copernicus.eu/
https://inov.pt/project/ciclope/index.html
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2020.01.013
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2020.01.013
https://www.sciencedirect.com/science/article/pii/S0924271620300149
https://www.sciencedirect.com/science/article/pii/S0924271620300149
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html


[17] DiceT verskyJacardLoss. URL: https://docs.monai.io/en/stable/losses.
html.

[18] GeneralizedDiceLoss. URL: https://docs.monai.io/en/stable/losses.html.

33

https://docs.monai.io/en/stable/losses.html
https://docs.monai.io/en/stable/losses.html
https://docs.monai.io/en/stable/losses.html

	Resumo
	Abstract
	Índice
	Lista de Figuras
	Lista de Tabelas
	1- Introdução
	2- Estado de arte
	3 - Metodologias
	4 - Resultados
	5 - Calendário
	6 - Conclusão
	Bibliografia

